【RT-DETR有效改进】结合SOTA思想利用双主干网络改进RT-DETR(全网独家创新,重磅更新)

一、本文介绍

本文给大家带来的改进机制是结合目前SOTAYOLOv9的思想利用双主干网络来改进RT-DETR(本专栏目前发布以来改进最大的内容,同时本文内容为我个人一手整理全网独家首发 | 就连V9官方不支持的模型宽度和深度修改我都均已提供,本文内容支持RT-DETR全系列模型均可使用,本文的内容超级适合想要发表论文的读者创新性不够,工作量不够的,本文的改进在感官上给人就有一种工作量多和创新点十足的感觉,同时本专栏内容以后均采用NEU-DET数据集进行对比实验模型(避免大家质疑数据集质量的问题),本文内容为独家整理!。

  欢迎大家订阅我的专栏一起学习RT-DETR! 

专栏目录: RT-DETR改进有效系列目录 | 包含卷积、主干、RepC3、注意力机制、Neck上百种创新机制

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR    

目录

一、本文介绍

二、原理介绍

2.1 可编程梯度信息

2.1.1 辅助可逆分支

2.1.2 多级辅助信息

2.2 Generalized ELAN

三、核心代码

四、手把手教你添加双主干网络

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

4.5 修改五 

4.6 修改六

4.7 修改七 

五、双主干网络的yaml文件和运行记录

5.1 双主干网络的yaml文件

5.2 训练代码 

5.3 双主干网络的训练过程截图 

五、本文总结


二、原理介绍

 

这张图(图3)展示了可编程梯度信息(PGI)及其相关网络架构和方法。图中展示了四种不同的网络设计:

a) PAN (Path Aggregation Network):这种网络结构主要用于改进特征融合,以提高目标检测的性能。然而,由于信息瓶颈的存在,网络中可能会丢失一些信息。

b) RevCol (Reversible Columns):这是一种旨在减少信息丢失的网络设计。它通过可逆的列结构来尝试维持信息流通不受损失,但如图中“Heavy Cost”所示,这种结构会增加计算成本。

c) 深度监督:这种方法通过在网络的多个层次中插入额外的监督信号来提高学习的效率和最终模型的性能。图中显示了通过深度监督连接的各个层。

d) 可编程梯度信息 (PGI):PGI是作者提出的一种新方法(我理解的这种方法就是在前向传播的过程中没有跳级链接),它主要由三个部分组成:
   1. 主分支:用于推理的架构。
   2. 辅助可逆分支:生成可靠的梯度,以供给主分支进行反向传播。
   3. 多级辅助信息:控制主分支学习可规划的多级语义信息。

PGI的目的是通过辅助可逆分支(如图中虚线框所示)来解决信息瓶颈问题,以便在不增加推理成本的情况下为深度网络提供更可靠的梯度。通过这种设计,即使是轻量级和浅层的神经网络也可以实现有效的信息保留和准确的梯度更新。如图中的深色方框所示的主分支,通过辅助可逆分支提供的可靠梯度信息,可以获得更有效的目标任务特征,而不会因为信息瓶颈而损失重要信息。

图中的符号代表不同的操作:灰色圆形代表池化操作,白色圆形代表上采样操作,灰色方块代表预测头,蓝色方块代表辅助分支,深色方块代表主分支。这种设计允许网络在保持高效计算的同时,也能够处理复杂的目标检测任务。


2.1 可编程梯度信息

为了解决前述问题,我们提出了一种新的辅助监督框架,称为可编程梯度信息(PGI),如图3(d)所示。PGI主要包括三个部分,即(1)主分支,(2)辅助可逆分支和(3)多级辅助信息。从图3(d)我们可以看到,PGI的推理过程只使用主分支,因此不需要任何额外的推理成本。至于其他两个部分,它们用于解决或减缓深度学习方法中的几个重要问题。其中,辅助可逆分支旨在处理由神经网络加深造成的问题。网络加深将导致信息瓶颈,这将使得损失函数无法生成可靠的梯度。至于多级辅助信息,它旨在处理由深度监督造成的误差累积问题,特别是对于具有多个预测分支的架构和轻量型模型。接下来,我们将逐步介绍这两个部分​​。 


2.1.1 辅助可逆分支

在PGI中,我们提出了辅助可逆分支来生成可靠的梯度并更新网络参数。通过提供从数据到目标的映射信息,损失函数可以提供指导,并避免从与目标关系较小的不完整前馈特征中找到错误相关性的可能性。我们提出通过引入可逆架构来维持完整信息,但在可逆架构中添加主分支将消耗大量的推理成本。我们分析了图3(b)的架构,并发现在深层到浅层添加额外连接时,推理时间将增加20%。当我们反复将输入数据添加到网络的高分辨率计算层(黄色框),推理时间甚至超过了两倍。

由于我们的目标是使用可逆架构来获取可靠的梯度,因此“可逆”并不是推理阶段的唯一必要条件。鉴于此,我们将可逆分支视为深度监督分支的扩展,并设计了如图3(d)所示的辅助可逆分支。至于主分支,由于信息瓶颈可能会丢失重要信息的深层特征,将能够从辅助可逆分支接收可靠的梯度信息。这些梯度信息将推动参数学习,以帮助提取正确和重要的信息,并使主分支能够获取更有效的目标任务特征。此外,由于复杂任务需要在更深的网络中进行转换,可逆架构在浅层网络上的表现不如在一般网络上。我们提出的方法不强迫主分支保留完整的原始信息,而是通过辅助监督机制生成有用的梯度来更新它。这种设计的优势是,所提出的方法也可以应用于较浅的网络。最后,由于辅助可逆分支可以在推理阶段移除,因此可以保留原始网络的推理能力。我们还可以在PGI中选择任何可逆架构来充当辅助可逆分支的角色。


2.1.2 多级辅助信息

在本节中,我们将讨论多级辅助信息是如何工作的。包含多个预测分支的深度监督架构如图3(c)所示。对于对象检测,可以使用不同的特征金字塔来执行不同的任务,例如它们可以一起检测不同大小的对象。因此,连接到深度监督分支后,浅层特征将被引导学习小对象检测所需的特征,此时系统将将其他大小的对象位置视为背景。然而,上述行为将导致深层特征金字塔丢失很多预测目标对象所需的信息。对于这个问题,我们认为每个特征金字塔都需要接收所有目标对象的信息,以便后续主分支能够保留完整信息来学习对各种目标的预测。

多级辅助信息的概念是在辅助监督的特征金字塔层之间和主分支之间插入一个集成网络,然后使用它来结合不同预测头返回的梯度,如图3(d)所示。然后,多级辅助信息将汇总包含所有目标对象的梯度信息,并将其传递给主分支然后更新参数。此时,主分支的特征金字塔层次的特性不会被某些特定对象的信息所主导。因此,我们的方法可以缓解深度监督中的断裂信息问题。此外,任何集成网络都可以在多级辅助信息中使用。因此,我们可以规划所需的语义级别来指导不同大小的网络架构的学习。


2.2 Generalized ELAN

在本节中,我们描述了提出的新网络架构 - GELAN。通过结合两种神经网络架构CSPNet和ELAN,这两种架构都是以梯度路径规划设计的,我们设计了考虑了轻量级、推理速度和准确性的广义高效层聚合网络(GELAN)。其整体架构如图4所示。我们推广了ELAN的能力,ELAN原本只使用卷积层的堆叠,到一个新的架构,可以使用任何计算块。

这张图(图4)展示了广义高效层聚合网络(GELAN)的架构,以及它是如何从CSPNet和ELAN这两种神经网络架构演变而来的。这两种架构都设计有梯度路径规划。

a) CSPNet:在CSPNet的架构中,输入通过一个转换层被分割为两部分,然后分别通过任意的计算块。之后,这些分支被重新合并(通过concatenation),并再次通过转换层。

b) ELAN:与CSPNet相比,ELAN采用了堆叠的卷积层,其中每一层的输出都会与下一层的输入相结合,再经过卷积处理。

c) GELAN:结合了CSPNet和ELAN的设计,提出了GELAN。它采用了CSPNet的分割和重组的概念,并在每一部分引入了ELAN的层级卷积处理方式。不同之处在于GELAN不仅使用卷积层,还可以使用任何计算块,使得网络更加灵活,能够根据不同的应用需求定制。

GELAN的设计考虑到了轻量化、推理速度和精确度,以此来提高模型的整体性能。图中显示的模块和分区的可选性进一步增加了网络的适应性和可定制性。GELAN的这种结构允许它支持多种类型的计算块,这使得它可以更好地适应各种不同的计算需求和硬件约束。

总的来说,GELAN的架构是为了提供一个更加通用和高效的网络,可以适应从轻量级到复杂的深度学习任务,同时保持或增强计算效率和性能。通过这种方式,GELAN旨在解决现有架构的限制,提供一个可扩展的解决方案,以适应未来深度学习的发展。

大家看图片一眼就能看出来它融合了什么,就是将CSPHet的anyBlock模块堆叠的方式和ELAN融合到了一起。


三、核心代码

核心代码的使用方式看章节四!

import torch
import torch.nn as nn
import torch.nn.functional as F__all__ = ['CBFuse', 'CBLinear', 'Silence']class Silence(nn.Module):def __init__(self):super(Silence, self).__init__()def forward(self, x):return xdef autopad(k, p=None, d=1):  # kernel, padding, dilation# Pad to 'same' shape outputsif d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass CBLinear(nn.Module):def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):  # ch_in, ch_outs, kernel, stride, padding, groupssuper(CBLinear, self).__init__()self.c2s = c2sself.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)def forward(self, x):outs = self.conv(x).split(self.c2s, dim=1)return outsclass CBFuse(nn.Module):def __init__(self, idx):super(CBFuse, self).__init__()self.idx = idxdef forward(self, xs):target_size = xs[-1].shape[2:]res = [F.interpolate(x[self.idx[i]], size=target_size, mode='nearest') for i, x in enumerate(xs[:-1])]out = torch.sum(torch.stack(res + xs[-1:]), dim=0)return out


四、手把手教你添加双主干网络

4.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!

4.4 修改四 

都是同一个文件大家按照我的修改就行从下面开始(此处大家如果修改了主干网络代码那么此处就需要修改,如果你没有修改我主干网络的添加教程此处就无需修改)


4.5 修改五 

按照我的添加在parse_model里添加即可。

        elif m is CBLinear:two_backbone = Truec2 = [int(x * width) for x in args[0]]c1 = ch[f]args = [c1, c2, *args[1:]]elif m is CBFuse:c2 = ch[f[-1]]


4.6 修改六

(此处大家如果修改了主干网络代码那么此处就需要修改,如果你没有修改我主干网络的添加教程此处就无需修改)


4.7 修改七 

(此处大家如果修改了主干网络代码那么此处就需要修改,如果你没有修改我主干网络的添加教程此处就无需修改) 

到此就修改完成了,大家可以复制下面的yaml文件运行。


五、双主干网络的yaml文件和运行记录

5.1 双主干网络的yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 1024]# gelan backbone
backbone:[[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepC3, [256]],  # 3# avg-conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepC3, [512]],  # 5# avg-conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepC3, [1024]],  # 7# avg-conv down[-1, 1, Conv, [1024, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepC3, [1024]],  # 9# routing[1, 1, CBLinear, [[64]]], # 10[3, 1, CBLinear, [[64, 128]]], # 11[5, 1, CBLinear, [[64, 128, 256]]], # 12[7, 1, CBLinear, [[64, 128, 256, 512]]], # 13[9, 1, CBLinear, [[64, 128, 256, 512, 1024]]], # 14# conv down fuse[0, 1, Conv, [64, 3, 2]],  # 15-P1/2[[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]], # 16# conv down fuse[-1, 1, Conv, [128, 3, 2]],  # 17-P2/4[[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]], # 18# elan-1 block[-1, 1, RepC3, [256]],  # 19# avg-conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 20-P3/8[[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]], # 21# elan-2 block[-1, 1, RepC3, [512]],  # 22# avg-conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 23-P4/16[[13, 14, -1], 1, CBFuse, [[3, 3]]], # 24# elan-2 block[-1, 1, RepC3, [1024]],  # 25# avg-conv down fuse[-1, 1, Conv, [1024, 3, 2]],  # 26-P5/32[[14, -1], 1, CBFuse, [[4]]], # 27# elan-2 block[-1, 1, RepC3, [1024]],  # 28]# gelan head
head:[# elan-spp block[28, 1, AIFI, [1024, 8]],  # 29[-1, 1, Conv, [256, 1, 1]],   # 30, Y5, lateral_convs.0[-1, 1, nn.Upsample, [None, 2, 'nearest']],[25, 1, Conv, [256, 1, 1, None, 1, 1, False]],  # 32 input_proj.1[[-2, -1], 1, Concat, [1]],[-1, 3, RepC3, [256]],  # 33, fpn_blocks.0[-1, 1, Conv, [256, 1, 1]],   # 34, Y4, lateral_convs.1[-1, 1, nn.Upsample, [None, 2, 'nearest']], #35[22, 1, Conv, [256, 1, 1, None, 1, 1, False]],  # 36 input_proj.0[[-2, -1], 1, Concat, [1]],  # cat backbone P4[-1, 3, RepC3, [256]],    # X3 (38), fpn_blocks.1[-1, 1, Conv, [256, 3, 2]],   # 39, downsample_convs.0[[-1, 34], 1, Concat, [1]],  # cat Y4[-1, 3, RepC3, [256]],    # F4 (41), pan_blocks.0[-1, 1, Conv, [256, 3, 2]],   # 42, downsample_convs.1[[-1, 30], 1, Concat, [1]],  # cat Y5[-1, 3, RepC3, [256]],    # F5 (44), pan_blocks.1# detect[[38, 41, 44], 1, RTDETRDecoder, [nc]],  # Detect(P3, P4, P5)]


5.2 训练代码 

大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。

import warnings
warnings.filterwarnings('ignore')
from ultralytics import RTDETRif __name__ == '__main__':model = RTDETR('ultralytics/cfg/models/rt-detr/rt-detr.yaml')# model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data=r'C:\Users\Administrator\Desktop\yolov5-master\yolov5-master\Construction Site Safety.v30-raw-images_latestversion.yolov8\data.yaml',# 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, posecache=False,imgsz=640,epochs=150,single_cls=False,  # 是否是单类别检测batch=4,close_mosaic=10,workers=0,device='0',optimizer='SGD', # using SGD# resume='', # 如过想续训就设置last.pt的地址amp=False,  # 如果出现训练损失为Nan可以关闭ampproject='runs/train',name='exp',)


5.3 双主干网络的训练过程截图 


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/718201.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【活动】金三银四,前端工程师如何把握求职黄金期

随着春意盎然的气息弥漫大地,程序员群体中也迎来了一年一度的“金三银四”求职热潮。这个时间段对于广大前端工程师而言,不仅象征着生机勃发的新起点,更是他们职业生涯中至关重要的转折点。众多知名公司在这一时期大规模开启招聘通道&#xf…

ChatGPT 4.0使用之论文阅读

文章目录 阅读环境准备打开AskYourPDF进入主站 粗读论文直接通过右侧边框进行提问选中文章内容翻译或概括插图的理解 总结 拥有了GPT4.0之后,最重要的就是学会如何充分发挥它的强大功能,不然一个月20美元的费用花费的可太心疼了(家境贫寒&…

WP外贸营销型网站模板

WordPress外贸独立站主题 简洁实用的WordPress外贸独立站主题,适合时尚服装行业搭建wordpress企业官网使用。 零件配件WordPress外贸建站模板 汽车行业零配件WordPress外贸建站模板,卖配件、零件的外贸公司可以使用的WordPress主题。 https://www.jia…

vue2 element 实现表格点击详情,返回时保留查询参数

先直观一点,上图 列表共5条数据,准备输入Author过滤条件进行查询 进入查看详情页,就随便搞了个按钮 啥都没调啦 点击返回后 一开始准备用vuex做这个功能,后来放弃了,想到直接用路由去做可能也不错。有时间再整一套…

一篇文章了解和使用Map和Set(HashMap/TreeMap/HashSet/TreeSet)

[本节目标] *掌握HashMap/TreeMap/HashSet/TreeSet的使用 *掌握了解HashSet和HashSet背后的哈希原理和简单的实现 1. 搜索树 1.1 概念 二叉搜索树又称二叉排序树,它或者是一颗空树,或者是具有以下性质的二叉树: 1.若它的左子树不为空,则左子树上所有节点的值都…

07OpenCV 图像模糊

文章目录 图像掩膜操作模糊原理均值滤波高斯滤波中值滤波双边滤波算子代码 图像掩膜操作 图像掩膜操作 模糊原理 Smooth/Blur是图像处理中最简单和常用的操作之一 使用操作的原因之一就是为了给图像预处理时候减低噪声 图像噪声是指存在于图像数据中的不必要的或多余的干扰信…

使用 Docker 部署 MrDoc 在线文档管理系统

1)MrDoc 介绍 MrDoc 简介 MrDoc 觅思文档:https://mrdoc.pro/ MrDoc 使用手册:https://doc.mrdoc.pro/p/user-guide/ MrDoc 可以创建各类私有化部署的文档应用。你可以使用它进行知识管理、构建团队文库、制作产品手册以及在线教程等。 Mr…

linux安全--DNS欺骗,钓鱼网站搭建

目录 一,实验准备 首先让client能上网 1)实现全网互通,实现全网互通过程请看 2)SNAT源地址转换 3)部署DHCP服务 4)配置DHCP服务 5)启动服务 6)安装DNS服务 7)DNS配置 8)启动DNS…

【Python笔记-设计模式】策略模式

一、说明 策略模式是一种行为设计模式,它定义了一系列算法,将每个算法封装起来,并使它们可以互相替换。 (一) 解决问题 在需要根据不同情况选择不同算法或策略,规避不断开发新需求后,代码变得非常臃肿难以维护管理。…

UE 打包窗口及鼠标状态设置

UE 打包窗口及鼠标状态设置 打包后鼠标不锁定 显示鼠标图标 打包后设置窗口模式 找到打包路径下的配置文件GameUserSettings,设置相关项目 FullscreenMode0表示全屏模式,1表示窗口全屏模式,2表示窗口模式

模型部署 - BevFusion - (1) - 思路总结

模型部署实践 - BevFusion 思路总结一、网络结构 - 总结1.1、代码1.2、网络流程图1.3、模块大致梳理 二、Onnx 的导出 -总体思路分析三、优化思路总结 学习 BevFusion 的部署,看了很多的资料,这篇博客进行总结和记录自己的实践 思路总结 对于一个模型我…

【代码】Android|获取压力传感器、屏幕压感数据(大气压、原生和Processing)

首先需要分清自己需要的是大气压还是触摸压力,如果是大气压那么就是TYPE_PRESSURE,可以参考https://source.android.google.cn/docs/core/interaction/sensors/sensor-types?hlzh-cn。如果是触摸压力就是另一回事,我需要的是触摸压力。 不过…

软考 系统分析师系列知识点之系统分析的任务、难点与要求(1)

所属章节: 第10章. 系统分析 第1节. 系统分析概述 系统分析阶段也称为逻辑设计阶段,其任务是根据系统设计书所确定的范围,对现有系统进行详细设计调查,描述现有系统的业务流程,指出现有系统的局限性和不足之处&#x…

事故预测 | Matlab基于FuzzySVR模糊支持向量机多特征变量事故预测

事故预测 | Matlab基于FuzzySVR模糊支持向量机多特征变量事故预测 目录 事故预测 | Matlab基于FuzzySVR模糊支持向量机多特征变量事故预测预测效果基本描述程序设计参考资料 预测效果 基本描述 Matlab基于FuzzySVR模糊支持向量机多特征变量事故预测 运行环境: Matlab2023及以 上…

C语言数组作为函数参数

有两种情形; 一种是数组元素作为函数实参;一种是数组名作为函数参数; 新建一个VC6单文档工程; void printshz(int , CDC* , int , int ); double getav(int a[5]); ...... void CShzcshView::OnDraw(CDC* pDC) {CShzcshDoc* pDo…

Pthon图像处理Opencv初步:色彩转换、打开摄像头

文章目录 处理流程颜色空间二值图像摄像头 python图像处理教程:初步📷插值变换📷形态学处理📷滤波 处理流程 opencv是跨平台图像处理库,为许多编程语言提供了接口,Python自然在列,但在使用pip…

32单片机基础:PWM驱动舵机,直流电机

PWM驱动舵机 接线图如上图所示。注意,舵机的5V 线不能接到面包板上的正极,面包板上的正极只有3.3V,是STM32提供的,所以要接到STLINK的5V, 我们如何驱动舵机呢?由之前我们介绍原理知道,要输出如下图对应的PWM波形才行…

AWTK 开源串口屏开发(11) - 天气预报

# AWTK 开源串口屏开发 - 天气预报 天气预报是一个很常用的功能,在很多设备上都有这个功能。实现天气预报的功能,不能说很难但是也绝不简单,首先需要从网上获取数据,再解析数据,最后更新到界面上。 在 AWTK 串口屏中…

数字革命的浪潮:Web3如何改变一切

随着数字技术的不断发展,人类社会正迎来一场前所未有的数字革命浪潮。在这个浪潮中,Web3技术以其去中心化、安全、透明的特性,正在逐渐改变着我们的生活方式、商业模式以及社会结构。本文将深入探讨Web3技术如何改变一切,以及其所…

volatile关键字的作用 以及 单例模式(饿汉模式与懒汉模式的区别及改进)

文章目录 💡volatile保证内存可见性💡单例模式💡饿汉模式💡懒汉模式💡懒汉模式多线程版💡volatile防止指令重排序 💡volatile保证内存可见性 Volatile 修饰的变量能够保证“内存可见性”以及防…