计算机设计大赛 深度学习猫狗分类 - python opencv cnn

文章目录

  • 0 前言
  • 1 课题背景
  • 2 使用CNN进行猫狗分类
  • 3 数据集处理
  • 4 神经网络的编写
  • 5 Tensorflow计算图的构建
  • 6 模型的训练和测试
  • 7 预测效果
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习猫狗分类 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

要说到深度学习图像分类的经典案例之一,那就是猫狗大战了。猫和狗在外观上的差别还是挺明显的,无论是体型、四肢、脸庞和毛发等等,
都是能通过肉眼很容易区分的。那么如何让机器来识别猫和狗呢?这就需要使用卷积神经网络来实现了。
本项目的主要目标是开发一个可以识别猫狗图像的系统。分析输入图像,然后预测输出。实现的模型可以根据需要扩展到网站或任何移动设备。我们的主要目标是让模型学习猫和狗的各种独特特征。一旦模型的训练完成,它将能够区分猫和狗的图像。

2 使用CNN进行猫狗分类

卷积神经网络 (CNN)
是一种算法,将图像作为输入,然后为图像的所有方面分配权重和偏差,从而区分彼此。神经网络可以通过使用成批的图像进行训练,每个图像都有一个标签来识别图像的真实性质(这里是猫或狗)。一个批次可以包含十分之几到数百个图像。

对于每张图像,将网络预测与相应的现有标签进行比较,并评估整个批次的网络预测与真实值之间的距离。然后,修改网络参数以最小化距离,从而增加网络的预测能力。类似地,每个批次的训练过程都是类似的。
在这里插入图片描述

3 数据集处理

猫狗照片的数据集直接从kaggle官网下载即可,下载后解压,这是我下载的数据:
在这里插入图片描述在这里插入图片描述
相关代码

import os,shutiloriginal_data_dir = "G:/Data/Kaggle/dogcat/train"base_dir = "G:/Data/Kaggle/dogcat/smallData"if os.path.isdir(base_dir) == False:os.mkdir(base_dir)# 创建三个文件夹用来存放不同的数据:train,validation,testtrain_dir = os.path.join(base_dir,'train')if os.path.isdir(train_dir) == False:os.mkdir(train_dir)validation_dir = os.path.join(base_dir,'validation')if os.path.isdir(validation_dir) == False:os.mkdir(validation_dir)test_dir = os.path.join(base_dir,'test')if os.path.isdir(test_dir) == False:os.mkdir(test_dir)# 在文件中:train,validation,test分别创建cats,dogs文件夹用来存放对应的数据train_cats_dir = os.path.join(train_dir,'cats')if os.path.isdir(train_cats_dir) == False:os.mkdir(train_cats_dir)train_dogs_dir = os.path.join(train_dir,'dogs')if os.path.isdir(train_dogs_dir) == False:os.mkdir(train_dogs_dir)validation_cats_dir = os.path.join(validation_dir,'cats')if os.path.isdir(validation_cats_dir) == False:os.mkdir(validation_cats_dir)validation_dogs_dir = os.path.join(validation_dir,'dogs')if os.path.isdir(validation_dogs_dir) == False:os.mkdir(validation_dogs_dir)test_cats_dir = os.path.join(test_dir,'cats')if os.path.isdir(test_cats_dir) == False:os.mkdir(test_cats_dir)test_dogs_dir = os.path.join(test_dir,'dogs')if os.path.isdir(test_dogs_dir) == False:os.mkdir(test_dogs_dir)#将原始数据拷贝到对应的文件夹中 catfnames = ['cat.{}.jpg'.format(i) for i in range(1000)]for fname in fnames:src = os.path.join(original_data_dir,fname)dst = os.path.join(train_cats_dir,fname)shutil.copyfile(src,dst)fnames = ['cat.{}.jpg'.format(i) for i in range(1000,1500)]for fname in fnames:src = os.path.join(original_data_dir,fname)dst = os.path.join(validation_cats_dir,fname)shutil.copyfile(src,dst)fnames = ['cat.{}.jpg'.format(i) for i in range(1500,2000)]for fname in fnames:src = os.path.join(original_data_dir,fname)dst = os.path.join(test_cats_dir,fname)shutil.copyfile(src,dst)#将原始数据拷贝到对应的文件夹中 dog
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:src = os.path.join(original_data_dir,fname)dst = os.path.join(train_dogs_dir,fname)shutil.copyfile(src,dst)fnames = ['dog.{}.jpg'.format(i) for i in range(1000,1500)]
for fname in fnames:src = os.path.join(original_data_dir,fname)dst = os.path.join(validation_dogs_dir,fname)shutil.copyfile(src,dst)fnames = ['dog.{}.jpg'.format(i) for i in range(1500,2000)]
for fname in fnames:src = os.path.join(original_data_dir,fname)dst = os.path.join(test_dogs_dir,fname)shutil.copyfile(src,dst)
print('train cat images:', len(os.listdir(train_cats_dir)))
print('train dog images:', len(os.listdir(train_dogs_dir)))
print('validation cat images:', len(os.listdir(validation_cats_dir)))
print('validation dog images:', len(os.listdir(validation_dogs_dir)))
print('test cat images:', len(os.listdir(test_cats_dir)))
print('test dog images:', len(os.listdir(test_dogs_dir)))
train cat images: 1000
train dog images: 1000
validation cat images: 500
validation dog images: 500
test cat images: 500
test dog images: 500

4 神经网络的编写

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

5 Tensorflow计算图的构建

然后,再搭建tensorflow的计算图,定义占位符,计算损失函数、预测值和准确率等等

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)
# 图片输入网络中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

6 模型的训练和测试

然后编写训练部分的代码,训练步骤为1万步

acc_list = []
with tf.Session() as sess:sess.run(tf.global_variables_initializer())for i in range(TRAIN_STEP):train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)eval_ops = [self.loss, self.acc, self.train_op]eval_ops_results = sess.run(eval_ops, feed_dict={self.x:train_data,self.y:train_label,self.keep_prob:0.7})loss_val, train_acc = eval_ops_results[0:2]acc_list.append(train_acc)if (i+1) % 100 == 0:acc_mean = np.mean(acc_list)print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(i+1,loss_val,train_acc,acc_mean))if (i+1) % 1000 == 0:test_acc_list = []for j in range(TEST_STEP):test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)acc_val = sess.run([self.acc],feed_dict={self.x:test_data,self.y:test_label,self.keep_prob:1.0})test_acc_list.append(acc_val)print('[Test ] step:{0}, mean_acc:{1:.5}'.format(i+1, np.mean(test_acc_list)))# 保存训练后的模型os.makedirs(SAVE_PATH, exist_ok=True)self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:
在这里插入图片描述
训练1万步后模型测试的平均准确率有0.82。

7 预测效果

选取三张图片测试
在这里插入图片描述
在这里插入图片描述
可见,模型准确率还是较高的。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/717510.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python测试框架pytest介绍用法

1、介绍 pytest是python的一种单元测试框架,同自带的unittest测试框架类似,相比于unittest框架使用起来更简洁、效率更高 pip install -U pytest 特点: 1.非常容易上手,入门简单,文档丰富,文档中有很多实例可以参考 2.支持简单的单…

C++内存模型与内存序

写在前面 在真正了解Memory Order的作用之前,曾经简单地将Memory Order等同于mutex和atomic来进行线程间数据同步,或者用来限制线程间的执行顺序,其实这是一个错误的理解。直到后来仔细研究了Memory Order之后,才发现无论是功能还…

力扣706:设计哈希映射

题目: 不使用任何内建的哈希表库设计一个哈希映射(HashMap)。 实现 MyHashMap 类: MyHashMap() 用空映射初始化对象void put(int key, int value) 向 HashMap 插入一个键值对 (key, value) 。如果 key 已经存在于映射中&#x…

【GPU驱动开发】- mesa编译与链接过程详细分析

前言 不必害怕未知,无需恐惧犯错,做一个Creator! 一、总体框架图 暂时无法在飞书文档外展示此内容 二、Mesa API 处理 OpenGL 函数调用 Mesa API 负责实现 OpenGL 和其他图形 API 的函数接口。Mesa API 表是一个重要的数据结构&#xf…

数据中台的演进与实践——构建企业的数字核心_光点科技

数据中台,一个在近年来被频繁提及的概念,已经成为众多企业数字化转型的核心组成部分。然而,尽管它的重要性被业界广泛认可,对于数据中台的深入理解和有效实践仍然是许多企业面临的挑战。在本文中,我们将从数据中台的演…

基于window安装Elasticsearch详细教程

目录 一、安装Java环境1.1 Java版本选择 二、下载和安装ES2.1 下载地址2.2 文件目录 3、启动服务3.1 以管理员身份打开cmd3.2 首次登录会有密码,需要记住3.3 访问 一、安装Java环境 1.1 Java版本选择 官网地址:https://www.elastic.co/cn/support/matr…

9个接口性能优化方案,RT从9000ms到180ms

昨天接到生产 SkyWalking 链路监控告警: 服务的百分位数响应时间在过去的 10 分钟内超过 2000 毫秒的次数达到 3 次。 经过不断的优化,将接口从 9000ms 优化到 180ms,先看结果 优化前: 优化后: 废话不多我们开始 一、定位性能差的…

Maven实战(2)之搭建maven私服

一, 背景: 如果使用国外镜像,下载速度比较慢; 如果使用阿里云镜像,速度还算OK,但是假如网速不好的时候,其实也是比较慢的; 如果没有网的情况下更加下载不了. 二, 本地仓库、个人/公司私服、远程仓库关系如下: 三, 下载安装nexus私服 略

Notepad3:告别Windows记事本,轻松进行文本编辑

名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪) 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 目录 一、什么是Notepad3?①Notepad3②核…

openGauss学习笔记-234 openGauss性能调优-系统调优-资源负载管理-资源管理准备-设置控制组

文章目录 openGauss学习笔记-234 openGauss性能调优-系统调优-资源负载管理-资源管理准备-设置控制组234.1 背景信息234.2 前提条件234.3 操作步骤234.3.1 创建子Class控制组和Workload控制组234.3.2 更新控制组的资源配额234.3.3 删除控制组 234.4 查看控制组的信息 openGauss…

第八节 龙晰Anolis 8.8 安装 DDE 桌面环境

一、前言 最小化安装的龙晰 Anolis OS 8.8 是不带图形化界面的,只能使用命令行,有些时候需要用到桌面环境,而DDE (Deepin Desktop Enviroment) 就是很好的桌面环境,它是指龙晰 Anolis 所搭载的中国自主桌面环境,用起来…

【算法沉淀】刷题笔记:并查集 带权并查集+实战讲解

🎉🎉欢迎光临🎉🎉 🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀 🌟特别推荐给大家我的最新专栏《数据结构与算法:初学者入门指南》📘&am…

Day13:信息打点-JS架构框架识别泄漏提取API接口枚举FUZZ爬虫插件项目

目录 JS前端架构-识别&分析 JS前端架构-开发框架分析 前端架构-半自动Burp分析 前端架构-自动化项目分析 思维导图 章节知识点 Web:语言/CMS/中间件/数据库/系统/WAF等 系统:操作系统/端口服务/网络环境/防火墙等 应用:APP对象/API接…

多模态大语言模型的ai反馈增强机器人操作研究

本研究关注于利用大语言模型(LLMs)提供的自动化偏好反馈来增强决策过程 ○ 提出了一种多模态LLM,称为CriticGPT,可以理解机器人操作任务中的轨迹视频,并提供分析和偏好反馈 ○ 从奖励建模的角度验证了CriticGPT生成的…

使用 MongoDB Atlas 无服务器实例更高效地开发应用程序

使用 MongoDB Atlas无服务器实例更高效地开发应用程序 身为开发者,数据库并不一定需要您来操心。您可不想耗费时间来预配置集群或调整集群大小。同样地,您也不想操心因未能正确扩展而导致经费超标。 MongoDB Atlas 可为您提供多个数据库部署选项。虽然…

【javascript】快速入门javascript

本文前言及说明 适合学过一门语言有一定基础的人看。 省略最初学习编程时的各种编程重复的基础知识。 javascript简介 编程语言(主前端) 用途:主web前后端,游戏,干别人网站 优点:速度快,浏…

一文扫盲:室内导航系统的应用场景和技术实现(入门级)

hello,我是贝格前端工场,之间搞过一些室内导航项目,有2D也有3D的,算是有些经验,这里给大家分享一下室内导航的基本尝试,欢迎老铁们点赞、关注,如有需求可以私信我们。 一、室内导航是什么 室内…

Vue开发实例(十)Tabs标签页打开、关闭与路由之间的关系

创建标签页 一、创建标签页二、点击菜单展示新标签页1、将标签数据作为全局使用2、菜单点击增加标签页3、处理重复标签4、关闭标签页 三、点击标签页操作问题1:点击标签页选中菜单进行高亮展示问题2:点击标签页路由也要跳转 四、解决bug 先展示最终效果 …

Android 基础入门 基础简介

1. 观察App运行日志 2.Android 开发设计的编程语言 koltin Java c c 3.工程目录结构 4.Gradle 5.build.gradle 文件解析 plugins {id("com.android.application")//用了哪些插件 主配置文件版本控制 所以这里不用写版本 }android {namespace "com.tiger.myap…

基于springboot+vue的二手车交易系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…