利用redis实现秒杀功能

6、秒杀优化

这个是 图灵 的redis实战里面的一个案例

6.1 秒杀优化-异步秒杀思路

我们来回顾一下下单流程

当用户发起请求,此时会请求nginx,nginx会访问到tomcat,而tomcat中的程序,会进行串行操作,分成如下几个步骤

1、查询优惠卷

2、判断秒杀库存是否足够

3、查询订单

4、校验是否是一人一单

5、扣减库存

6、创建订单

在这六步操作中,又有很多操作是要去操作数据库的,而且还是一个线程串行执行, 这样就会导致我们的程序执行的很慢,所以我们需要异步程序执行,那么如何加速呢?

在这里笔者想给大家分享一下课程内没有的思路,看看有没有小伙伴这么想,比如,我们可以不可以使用异步编排来做,或者说我开启N多线程,N多个线程,一个线程执行查询优惠卷,一个执行判断扣减库存,一个去创建订单等等,然后再统一做返回,这种做法和课程中有哪种好呢?答案是课程中的好,因为如果你采用我刚说的方式,如果访问的人很多,那么线程池中的线程可能一下子就被消耗完了,而且你使用上述方案,最大的特点在于,你觉得时效性会非常重要,但是你想想是吗?并不是,比如我只要确定他能做这件事,然后我后边慢慢做就可以了,我并不需要他一口气做完这件事,所以我们应当采用的是课程中,类似消息队列的方式来完成我们的需求,而不是使用线程池或者是异步编排的方式来完成这个需求

优化方案:我们将耗时比较短的逻辑判断放入到redis中,比如是否库存足够,比如是否一人一单,这样的操作,只要这种逻辑可以完成,就意味着我们是一定可以下单完成的,我们只需要进行快速的逻辑判断,根本就不用等下单逻辑走完,我们直接给用户返回成功, 再在后台开一个线程,后台线程慢慢的去执行queue里边的消息,这样程序不就超级快了吗?而且也不用担心线程池消耗殆尽的问题,因为这里我们的程序中并没有手动使用任何线程池,当然这里边有两个难点

第一个难点是我们怎么在redis中去快速校验一人一单,还有库存判断

第二个难点是由于我们校验和tomct下单是两个线程,那么我们如何知道到底哪个单他最后是否成功,或者是下单完成,为了完成这件事我们在redis操作完之后,我们会将一些信息返回给前端,同时也会把这些信息丢到异步queue中去,后续操作中,可以通过这个id来查询我们tomcat中的下单逻辑是否完成了。
在这里插入图片描述

我们现在来看看整体思路:当用户下单之后,判断库存是否充足只需要导redis中去根据key找对应的value是否大于0即可,如果不充足,则直接结束,如果充足,继续在redis中判断用户是否可以下单,如果set集合中没有这条数据,说明他可以下单,如果set集合中没有这条记录,则将userId和优惠卷存入到redis中,并且返回0,整个过程需要保证是原子性的,我们可以使用lua来操作

当以上判断逻辑走完之后,我们可以判断当前redis中返回的结果是否是0 ,如果是0,则表示可以下单,则将之前说的信息存入到到queue中去,然后返回,然后再来个线程异步的下单,前端可以通过返回的订单id来判断是否下单成功。

在这里插入图片描述

6.2 秒杀优化-Redis完成秒杀资格判断

需求:

  • 新增秒杀优惠券的同时,将优惠券信息保存到Redis中

  • 基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功

  • 如果抢购成功,将优惠券id和用户id封装后存入阻塞队列

  • 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能

VoucherServiceImpl

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {// 保存优惠券save(voucher);// 保存秒杀信息SeckillVoucher seckillVoucher = new SeckillVoucher();seckillVoucher.setVoucherId(voucher.getId());seckillVoucher.setStock(voucher.getStock());seckillVoucher.setBeginTime(voucher.getBeginTime());seckillVoucher.setEndTime(voucher.getEndTime());seckillVoucherService.save(seckillVoucher);// 保存秒杀库存到Redis中//SECKILL_STOCK_KEY 这个变量定义在RedisConstans中//private static final String SECKILL_STOCK_KEY ="seckill:stock:"stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}

完整lua表达式

-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then-- 3.2.库存不足,返回1return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then-- 3.3.存在,说明是重复下单,返回2return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0

当以上lua表达式执行完毕后,剩下的就是根据步骤3,4来执行我们接下来的任务了

VoucherOrderServiceImpl

@Override
public Result seckillVoucher(Long voucherId) {//获取用户Long userId = UserHolder.getUser().getId();long orderId = redisIdWorker.nextId("order");// 1.执行lua脚本Long result = stringRedisTemplate.execute(SECKILL_SCRIPT,Collections.emptyList(),voucherId.toString(), userId.toString(), String.valueOf(orderId));int r = result.intValue();// 2.判断结果是否为0if (r != 0) {// 2.1.不为0 ,代表没有购买资格return Result.fail(r == 1 ? "库存不足" : "不能重复下单");}//TODO 保存阻塞队列// 3.返回订单idreturn Result.ok(orderId);
}

6.3 秒杀优化-基于阻塞队列实现秒杀优化

VoucherOrderServiceImpl

修改下单动作,现在我们去下单时,是通过lua表达式去原子执行判断逻辑,如果判断我出来不为0 ,则要么是库存不足,要么是重复下单,返回错误信息,如果是0,则把下单的逻辑保存到队列中去,然后异步执行

//异步处理线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();//在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
@PostConstruct
private void init() {SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
// 用于线程池处理的任务
// 当初始化完毕后,就会去从对列中去拿信息private class VoucherOrderHandler implements Runnable{@Overridepublic void run() {while (true){try {// 1.获取队列中的订单信息VoucherOrder voucherOrder = orderTasks.take();// 2.创建订单handleVoucherOrder(voucherOrder);} catch (Exception e) {log.error("处理订单异常", e);}}}private void handleVoucherOrder(VoucherOrder voucherOrder) {//1.获取用户Long userId = voucherOrder.getUserId();// 2.创建锁对象RLock redisLock = redissonClient.getLock("lock:order:" + userId);// 3.尝试获取锁boolean isLock = redisLock.lock();// 4.判断是否获得锁成功if (!isLock) {// 获取锁失败,直接返回失败或者重试log.error("不允许重复下单!");return;}try {//注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效proxy.createVoucherOrder(voucherOrder);} finally {// 释放锁redisLock.unlock();}}//aprivate BlockingQueue<VoucherOrder> orderTasks =new  ArrayBlockingQueue<>(1024 * 1024);@Overridepublic Result seckillVoucher(Long voucherId) {Long userId = UserHolder.getUser().getId();long orderId = redisIdWorker.nextId("order");// 1.执行lua脚本Long result = stringRedisTemplate.execute(SECKILL_SCRIPT,Collections.emptyList(),voucherId.toString(), userId.toString(), String.valueOf(orderId));int r = result.intValue();// 2.判断结果是否为0if (r != 0) {// 2.1.不为0 ,代表没有购买资格return Result.fail(r == 1 ? "库存不足" : "不能重复下单");}VoucherOrder voucherOrder = new VoucherOrder();// 2.3.订单idlong orderId = redisIdWorker.nextId("order");voucherOrder.setId(orderId);// 2.4.用户idvoucherOrder.setUserId(userId);// 2.5.代金券idvoucherOrder.setVoucherId(voucherId);// 2.6.放入阻塞队列orderTasks.add(voucherOrder);//3.获取代理对象proxy = (IVoucherOrderService)AopContext.currentProxy();//4.返回订单idreturn Result.ok(orderId);}@Transactionalpublic  void createVoucherOrder(VoucherOrder voucherOrder) {Long userId = voucherOrder.getUserId();// 5.1.查询订单int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();// 5.2.判断是否存在if (count > 0) {// 用户已经购买过了log.error("用户已经购买过了");return ;}// 6.扣减库存boolean success = seckillVoucherService.update().setSql("stock = stock - 1") // set stock = stock - 1.eq("voucher_id", voucherOrder.getVoucherId()).gt("stock", 0) // where id = ? and stock > 0.update();if (!success) {// 扣减失败log.error("库存不足");return ;}save(voucherOrder);}

小总结:

秒杀业务的优化思路是什么?

  • 先利用Redis完成库存余量、一人一单判断,完成抢单业务
  • 再将下单业务放入阻塞队列,利用独立线程异步下单
  • 基于阻塞队列的异步秒杀存在哪些问题?
    • 内存限制问题
    • 数据安全问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/716835.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于单片机的红外遥控解码程序设计与实现

摘要:该文介绍基于士兰半导体芯片(SC6122)的红外发射遥控器,通过单片机解码程序,实现红外遥控信号的解码和接收。红外接收头与单片机特定的引脚连接,通过设置单片机定时计数器,采样来自红外接收头的高、低电平宽度解码遥控信号。该解码程序设计主要应用在LED数码显示控制…

电机的极数和槽数,机械角度和电角度,霍尔IC,内外转子

什么是电机的极数和槽数&#xff1f; 【第7集】② 正弦波驱动的转矩脉动、正弦电流的时序和相位变化、超前角控制&#xff08;超前角调整&#xff09;、正弦波驱动的各种波形 - 电源设计电子电路基础电源技术信息网站_罗姆电源设计R课堂 (rohm.com.cn) 下面为您介绍表示电机…

Java虚拟机(JVM)从入门到实战【上】

Java虚拟机&#xff08;JVM&#xff09;从入门到实战【上】&#xff0c;涵盖类加载&#xff0c;双亲委派机制&#xff0c;垃圾回收器及算法等知识点&#xff0c;全系列6万字。 一、基础篇 P1 Java虚拟机导学课程 P2 初识JVM 什么是JVM Java Virtual Machine 是Java虚拟机。…

3.2日-线性模型,基础优化方法,线性回归从零开始实现

3.2日-线性模型&#xff0c;基础优化方法&#xff0c;线性回归从零开始实现 1线性模型衡量预估质量训练数据总结2基础优化方法3 线性回归从零开始实现 1线性模型 衡量预估质量 训练数据 总结 2基础优化方法 梯度下降是一种优化算法&#xff0c;常用于机器学习和深度学习中&…

进程的信号

目录 信号(signal)入门 技术应用角度的信号 注意 用kill -l命令可以察看系统定义的信号列表 信号处理常见方式概览 产生信号 1.通过终端(键盘)按键产生信号 signal函数 2. 调用系统函数向进程发信号 kill 函数 raise 函数 3.由软件条件产生的信号 alarm 函数 4.硬…

(学习日记)2024.03.01:UCOSIII第三节 + 函数指针 (持续更新文件结构)

写在前面&#xff1a; 由于时间的不足与学习的碎片化&#xff0c;写博客变得有些奢侈。 但是对于记录学习&#xff08;忘了以后能快速复习&#xff09;的渴望一天天变得强烈。 既然如此 不如以天为单位&#xff0c;以时间为顺序&#xff0c;仅仅将博客当做一个知识学习的目录&a…

Kubernetes: 本地部署dashboard

本篇文章主要是介绍如何在本地部署kubernetes dashboard, 部署环境是mac m2 下载dashboard.yaml 官网release地址: kubernetes/dashboard/releases 本篇文章下载的是kubernetes-dashboard-v2.7.0的版本&#xff0c;通过wget命令下载到本地: wget https://raw.githubusercont…

【Python】进阶学习:pandas--isin()用法详解

【Python】进阶学习&#xff1a;pandas–isin()用法详解 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望得到您的订阅…

【NDK系列】Android tombstone文件分析

文件位置 data/tombstone/tombstone_xx.txt 获取tombstone文件命令&#xff1a; adb shell cp /data/tombstones ./tombstones 触发时机 NDK程序在发生崩溃时&#xff0c;它会在路径/data/tombstones/下产生导致程序crash的文件tombstone_xx&#xff0c;记录了死亡了进程的…

单细胞Seurat - 细胞聚类(3)

本系列持续更新Seurat单细胞分析教程&#xff0c;欢迎关注&#xff01; 维度确定 为了克服 scRNA-seq 数据的任何单个特征中广泛的技术噪音&#xff0c;Seurat 根据 PCA 分数对细胞进行聚类&#xff0c;每个 PC 本质上代表一个“元特征”&#xff0c;它结合了相关特征集的信息。…

mysql5*-mysql8 区别

1.Mysql5.7-Mysql8.0 sysbench https://github.com/geekgogie/mysql57_vs_8-benchmark_scripts 1.读、写、删除更新 速度 512 个线程以后才会出现如下的。 2.删除速度 2.事务处理性能 3.CPU利用率 mysql8 利用率高。 4.排序 5.7 只能ASC&#xff0c;不能降序 数据越来越大

牢记于心单独说出来的知识点(后续会加)

第一个 非十进制&#xff08;八进制&#xff0c;十六进制&#xff09;写在文件中它本身就是补码&#xff0c;计算机是不用进行内存转换&#xff0c;它直接存入内存。&#xff08;因为十六进制本身是补码&#xff0c;所以计算机里面我们看到的都是十六进制去存储&#xff09; …

Qt 简约美观的加载动画 文本风格 第八季

今天和大家分享一个文本风格的加载动画, 有两类,其中一个可以设置文本内容和文本颜色,演示了两份. 共三个动画, 效果如下: 一共三个文件,可以直接编译 , 如果对您有所帮助的话 , 不要忘了点赞呢. //main.cpp #include "LoadingAnimWidget.h" #include <QApplic…

MySQL:开始深入其数据(一)DML

在上一章初识MySQL了解了如何定义数据库和数据表&#xff08;DDL&#xff09;&#xff0c;接下来我们开始开始深入其数据,对其数据进行访问&#xff08;DAL&#xff09;、查询DQL&#xff08;&#xff09;和操作(DML)等。 通过DML语句操作管理数据库数据 DML (数据操作语言) …

计算机网络之传输层 + 应用层

.1 UDP与TCP IP中的检验和只检验IP数据报的首部, 但UDP的检验和检验 伪首部 首部 数据TCP的交互单位是数据块, 但仍说TCP是面向字节流的, 因为TCP仅把应用层传下来的数据看成无结构的字节流, 根据当时的网络环境组装成大小不一的报文段.10秒内有1秒用于发送端发送数据, 信道…

【Python】进阶学习:pandas--groupby()用法详解

&#x1f4ca;【Python】进阶学习&#xff1a;pandas–groupby()用法详解 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448;…

Python算法100例-3.5 亲密数

1.问题描述2.问题分析3.算法设计4.确定程序框架5.完整的程序6.问题拓展 1&#xff0e;问题描述 如果整数A的全部因子&#xff08;包括1&#xff0c;不包括A本身&#xff09;之和等于B&#xff0c;且整数B的全部因子&#xff08;包括1&#xff0c;不包括B本身&#xff09;之和…

中国电子学会2020年6月份青少年软件编程Sc ratch图形化等级考试试卷四级真题。

第 1 题 【 单选题 】 1.执行下面程序&#xff0c;输入4和7后&#xff0c;角色说出的内容是&#xff1f; A&#xff1a;4&#xff0c;7 B&#xff1a;7&#xff0c;7 C&#xff1a;7&#xff0c;4 D&#xff1a;4&#xff0c;4 2.执行下面程序&#xff0c;输出是&#xff…

CVE-2016-5195 复现记录

文章目录 poc前置知识页表与缺页异常/proc/self/mem的写入流程madvise 漏洞点修复 Dirty COW脏牛漏洞是一个非常有名的Linux竞争条件漏洞&#xff0c;虽然早在2016年就已经被修复&#xff0c;但它依然影响着众多古老版本的Linux发行版&#xff0c;如果需要了解Linux的COW&#…

Redis7 实现持久化的三种方式

1、概述 1.1、Redis持久化的重要性 数据恢复&#xff1a;Redis是一个内存数据库&#xff0c;如果系统或服务宕机&#xff0c;内存中的数据将会丢失。Redis的持久化机制可以把数据保存到磁盘上&#xff0c;以便在系统重启后恢复数据。这是Redis持久化最基本也是最重要的功能。…