【NR 定位】3GPP NR Positioning 5G定位标准解读(一)

目录

 

前言

1. 3GPP规划下的5G技术演进

2. 5G NR定位技术的发展

2.1 Rel-16首次对基于5G的定位技术进行标准化

2.2 Rel-17进一步提升5G定位技术的性能

3. Rel-18 关于5G定位技术的新方向、新进展

3.1 Sidelink高精度定位功能

3.2 针对上述不同用例,3GPP考虑按照下表中的精度要求为目标,开展标准化工作:

3.3 对高精度定位完整性和低功耗的增强

4. 基于RedCap 的UE定位


 

前言

3GPP NR Positioning 5G定位标准:3GPP TS 38.305 V18

3GPP 标准网址:https://www.3gpp.org/ftp/

【NR 定位】3GPP NR Positioning 5G定位标准解读(一)-CSDN博客

【NR 定位】3GPP NR Positioning 5G定位标准解读(二)-CSDN博客

1. 3GPP规划下的5G技术演进

根据3GPP的规划,5G技术演进被分为两个阶段,Rel-15/16/17这三个版本称为5G演进的第一阶段,之后的Rel-18/19/20这三个版本称为5G演进的第二轮创新,也就是5G Advanced。

在5G演进的第一阶段中,Rel-15是5G的基础标准,于2018年(NSA)和2019年(SA)分别冻结,重点满足增强移动宽带(eMBB)和基础的低时延高可靠(URLLC)应用需求。

Rel-16于2020年冻结,主要聚焦于eMBB的增强,低时延高可靠能力的完善,关注垂直行业应用及整体系统的提升,如面向智能汽车交通领域的5G V2X、面向IIoT领域的时间敏感联网等5G NR能力,以及定位、MIMO增强、功耗改进等系统性的提升与增强。

Rel-17在Rel-16的框架下对5G标准进行了进一步的增强,于2022年冻结,其面向5G XR、新型物联网等新业务需求,重点引入了许多全新的特性和技术,比如Redcap终端、上行覆盖增强、动态频谱共享、多播广播业务、多卡技术、卫星5G网络、卫星 NB-IoT物联网、下行1024QAM、定位增强、MIMO技术进一步增强(FeMIMO)、节能增强、URLLC增强、CA/DC增强、辅链路通信增强、无线切片增强等。

2. 5G NR定位技术的发展

5G 应用分为三大类场景:增强移动宽带(eMBB)、海量机器类通信(mMTC)和超可 靠低时延通信(URLLC)。eMBB 场景是指在现有移动宽带业务场景的基础上,对于用 户体验等性能的进一步提升,主要还是追求人与人之间极致的通信体验。mMTC 和 uRLLC 都是物联网的应用场景,但各自侧重点不同。mMTC 主要用于低速时延不敏感的海量物与物的连接。而 URLLC则强调在工业及控制场景对高可靠性和低时延有需求的连接 定位应用在 5G 三大场景中都扮演重要的角色,定位能力更是是 5G 核心能力之一。

2.1 Rel-16首次对基于5G的定位技术进行标准化

R16版本中增加了5G定位功能,其利用MIMO多波束特性,定义了基于蜂窝小区的多站信号往返时间(Multi-RTT)、信号到达时间差(TDOA)、到达角测量法(AoA)、离开角测量法(AoD)等定位技术。R16标准中,室内和室外定位的精度要求如下:

  • 对于80%的UE,水平定位精度优于3米(室内)和10米(室外)。
  • 对于80%的UE,垂直定位精度优于3米(室内和室外)。

2.2 Rel-17进一步提升5G定位技术的性能

随着5G NR通信系统大规模部署,垂直行业场景对定位服务提出了越来越迫切的需求。对运营商而言,也对未来位置服务的广阔市场充满期待,迫切需要拓展基于5G NR的位置增值服务,为普通用户和垂直行业(ToB)提供更高精度的定位服务(20cm)。

因此3GPP确定Rel-17在以下方面进行增强 [摘自3GPP TR 38.857]

  • 更高的精度(水平/垂直)
  • 低时延(物理层和高层端到端定位时延)
  • 网络和/或设备效率
  • 高完整性和可靠性(用于GNSS)

商业场景及IIOT场景下性能指标的要求分别为:

商业用例的目标定位需求定义如下:

- 90%的ue水平定位精度(< 1米)

- 90% ue的垂直定位精度(< 3米)

-终端位置估计的端到端延迟(< 100 ms)

- UE位置估计的物理层延迟(< 10 ms)

IIoT用例的目标定位要求定义如下:

- 90%的ue水平定位精度(< 0.2 m)

- 90%的ue的垂直位置精度(< 1米)

- UE位置估计的端到端延迟(< 100ms,期望为10ms)

- UE位置估计的物理层延迟(<10ms)

注1:并非所有方案和部署都能达到目标定位要求

注2:对于某些场景,在工业物联网用例中,对水平位置精度的要求可以放宽到< 0.5 m。

注3:并非所有定位技术都能在所有场景下达到目标定位要求

3. Rel-18 关于5G定位技术的新方向、新进展

Rel-18中关于5G定位技术的讨论主要包括三个方向:Sidelink高精度定位功能,对高精度定位完整性和低功耗的增强,基于RedCap 的UE定位;下文将详细介绍这三个方向的研究和讨论内容。为减少分歧,部分专业词汇及内容将直接引用3GPP相关文档原文。

3.1 Sidelink高精度定位功能

Sidelink定位是Rel-18新引入的特性,与之前版本的NR RAT定位相对独立,旨在研究通过PC5接口实现Sidelink高精度定位功能,这也称之为standalone模式;除此之外,也支持与现有NR RAT技术联合,通过基站辅助(需在覆盖、半覆盖场景下)实现协同定位,即non-standalone模式。Sidelink定位的基础属性如下:

  • 覆盖:覆盖内、部分覆盖和覆盖外
  • 要求:基于TR38.845和TS22.261和TS22.104中确定的要求
  • 用例:V2X (TR38.845)、公共安全(TR38.845)、商业(TS22.261)、工业物联网(TS22.104)
  • 频谱:ITS band和授权频谱

具体地,由于Sidelink是一套比较独立的系统,具备两种工作模式(mode1和mode2),且可能在没有网络覆盖的场景工作,因此需要从头到尾重新设计Sidelink定位方案。不过,在一些技术上还是参考了NR定位设计,例如参考信号,定位测量等方面。

在Rel-18中,定义了三种Sidelink定位方式,分别是Absolute positioning、Relative positioning和Ranging,三种方式对应的描述如下:

- Ranging accuracy, expressed as the difference (error) between the calculated distance/direction and the actual distance/direction in relation to another node

- Relative positioning accuracy, expressed as the difference (error) between the calculated horizontal/vertical position and the actual horizontal/vertical position relative to another node

- Absolute positioning accuracy, expressed as the difference (error) between the calculated horizontal/vertical position and the actual horizontal/vertical position.

3.2 针对上述不同用例,3GPP考虑按照下表中的精度要求为目标,开展标准化工作:

Table: Target accuracy requirements for SL positioning

3.3 对高精度定位完整性和低功耗的增强

为了进一步提高精度,Rel- 18考虑在NR RAT定位引入两种较有前景的技术:一种是利用5G丰富的频谱,基于PRS/SRS带宽聚合来增加定位参考信号的收发带宽,另一种是使用NR载波相位测量。与现有的NR定位方法相比,NR载波相位定位在室内和室外部署中具有显著的性能改进潜力,并且与室外RTK-GNSS相比,具有更短的延迟和更低的终端功耗。此外,还将研究基于NR RAT的定位完整性和低功耗高精度定位技术。具体地,可以分为以下四个部分:

1. Improved accuracy based on NR carrier phase measurement

在Rel-18中,由于极其优异的定位性能(经过仿真模拟,能够实现厘米级定位精度,可参考TR 38.859),基于载波相位测量的定位方式被引入,各家公司在该议题下进行了大量讨论,包括如何进行相位测量、定位计算及上报等问题。其中,如何确定整数模糊度(请见下文原理说明),是目前讨论最多的问题。

在载波相位定位的标准化工作中,一个主要导向是尽量避免给现有协议带来额外影响,因此载波相位定位的很多机制都重用了现有NR定位内容。简而言之,载波相位定位只是在具体的定位算法上和现有技术有区别,而定位触发、测量和上报等环节和现有方式原理是类似的(至少从物理层流程的角度看,但也有一些差异内容),可以理解为是将载波相位定位方式纳入现有定位体系。

2. Bandwidth aggregation for positioning measurements

RAN 1从112次会议开始讨论基于带宽聚合的定位,这和载波聚合通信是不同的概念,但其中有一些交叉的部分。无论是上行SRS还是下行PRS,在Rel-18中均支持带宽聚合定位,但定位的带宽聚合实现更为复杂,因为涉及到关联TRP和定位频率层等概念,聚合的资源在频域上不一定是连续的。从物理层的角度,UE在Connected态、inactive态和idle态下均可进行PRS带宽聚合测量,在Connected态和inactive态可以进行定位SRS带宽聚合。

3. Solutions for integrity of RAT dependent positioning techniques

在之前的版本中,3GPP完成了基于GNSS定位的完整性设计,在Rel-18中,3GPP决定处理基于NR RAT定位方式的定位完整性。其中,定位完整性可以理解为对定位相关数据的精确性以及提供相关警报的能力的信任度量,其定义如下:

Positioning integrity: A measure of the trust in the accuracy of the position-related data and the ability to provide associated alerts.

4. LPHAP (Low Power High Accuracy Positioning).

Rel-18 LPHAP目前的研究侧重于评估RRC_INACTIVE态下,基于现有Rel-17定位技术,终端是否能够满足电池时间需求(电池时间评估方式已达成一致意见,请参考会议结论)以及定位要求。并且,为了能够处理RRC_INACTIVE状态和/或RRC_IDLE状态下UE面临的任何限制,3GPP正研究对应的增强方案。

具体地,3GPP确定TS 22.104中的用例6(如下表所示),对应的电池时间需求为6-12个月,作为LPHAP研究的代表用例。在物理层,功率消耗是LPHAP仿真评估的主要角度。

如上表所示,LPHAP定位要求可以总结为:

  • 90%的ue水平定位精度< 1米;
  • 定位间隔/占空比15-30秒;
  • ue电池寿命6个月- 1年;

4. 基于RedCap 的UE定位

RedCap UE定位作为Rel-18定位研究的一个重要部分,在研究初期是基于传统NR RAT定位方式进行性能评估,然后基于这部分仿真结果,识别需要增强的技术。在仿真假设中,FR1下的带宽设置为20MHz,可选5MHz,FR2下的带宽设置为100MHz。其定位性能要求如下:

1.用于室内和室外场景的商业用例

-水平定位精度:90%的ue(< 3米)

-垂直定位精度:90%的ue < 3米

2.对于工业物联网用例:

-水平定位精度:90%的ue < 1m

-垂直定位精度:90%的ue < 3米

(备注:对于上述评估的目标需求,需要注意的是,目标定位需求可能并不一定能够实现所有的场景和用例。此外,并非所有的定位技术都能满足所有场景下的所有定位需求。)

具体地,由于RedCap UE带宽能力较低,因此各公司非常关注跳频(frequency hopping)技术在RedCap定位的应用,包括上行SRS传输hopping和下行PRS接收hopping。在RAN1 112会议中,3GPP确定PRS仅支持下行hopping接收,即网络侧不采用hopping方式传输DL PRS,因为这对现有协议的改动较大。另外,无论是上行SRS hopping还是下行PRS hopping,都被配置在单个SRS/PRS资源内进行,且SRS hopping无论是RRC_connected态还是RRC_inactive态都支持。Redcap UE定位还重点讨论了测量间隔、hopping pattern、上行SRS碰撞和hop间切换时延等问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/716564.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go-知识简短变量声明

Go-知识简短变量声明 1. 简短变量声明符2. 简短变量赋值可能会重新声明3. 简短变量赋值不能用于函数外部4. 简短变量赋值作用域问题5. 总结 githuio地址&#xff1a;https://a18792721831.github.io/ 1. 简短变量声明符 在Go语言中&#xff0c;可以使用关键字var或直接使用简短…

【STK】手把手教你利用STK进行仿真-STK软件基础02 STK系统的软件界面01 STK的界面窗口组成

STK系统是Windows窗口类型的桌面应用软件,功能非常强大。在一个桌面应用软件中集成了仿真对象管理、仿真对象属性参数、设置、空间场景二三维可视化、场景显示控制欲操作、仿真结果报表定制与分析、对象数据管理、仿真过程控制、外部接口连接和系统集成编程等复杂的功能。 STK…

SpringBoot之Actuator的两种监控模式

SpringBoot之Actuator的两种监控模式 springboot提供了很多的检测端点(Endpoint),但是默认值开启了shutdown的Endpoint&#xff0c;其他默认都是关闭的,可根据需要自行开启 文章目录 SpringBoot之Actuator的两种监控模式1. pom.xml2. 监控模式1. HTTP2. JMX 1. pom.xml <de…

力扣 第 125 场双周赛 解题报告 | 珂学家 | 树形DP + 组合数学

前言 整体评价 T4感觉有简单的方法&#xff0c;无奈树形DP一条路上走到黑了&#xff0c;这场还是有难度的。 T1. 超过阈值的最少操作数 I 思路: 模拟 class Solution {public int minOperations(int[] nums, int k) {return (int)Arrays.stream(nums).filter(x -> x <…

VM虚拟机无法传输文件(更新时间24/3/3)

出现这个问题一般是未安装VMware Tools 以下为手动安装教程及可能出现的问题的解决方法&#xff1a; 1. 准备安装 2.用cmd手动启动安装 3. 安装过程默认即可&#xff0c;直接一直下一步 4.安装完成后会自动重启虚拟机&#xff08;没有的话手动重启即可&#xff09; 5.重启以后…

StarCoder2模型,释放你的大模型编码潜能

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

部署若依前后端分离项目,连接数据库失败

部署若依前后端分离项目&#xff0c;连接数据库失败&#xff0c;异常如下&#xff1a; 解决方案&#xff1a;application配置文件里&#xff0c;连接数据库的参数useSSL的值改为false

leetcode 长度最小的子数组

在本题中&#xff0c;我们可以知道&#xff0c;是要求数组中组成和为target的最小子数组的长度。所以&#xff0c;我们肯定可以想到用两层for循环进行遍历&#xff0c;然后枚举所有的结果进行挑选&#xff0c;但这样时间复杂度过高。 我们可以采用滑动窗口&#xff0c;其实就是…

编写dockerfile挂载卷、数据容器卷

编写dockerfile挂载卷 编写dockerfile文件 [rootwq docker-test-volume]# vim dockerfile1 [rootwq docker-test-volume]# cat dockerfile1 FROM centosVOLUME ["volume01","volume02"]CMD echo "------end------" CMD /bin/bash [rootwq dock…

2024 年广东省职业院校技能大赛(高职组)“云计算应用”赛项样题 2

#需要资源或有问题的&#xff0c;可私博主&#xff01;&#xff01;&#xff01; #需要资源或有问题的&#xff0c;可私博主&#xff01;&#xff01;&#xff01; #需要资源或有问题的&#xff0c;可私博主&#xff01;&#xff01;&#xff01; 某企业根据自身业务需求&#…

每日OJ题_牛客_合法括号序列判断

目录 合法括号序列判断 解析代码 合法括号序列判断 合法括号序列判断__牛客网 解析代码 class Parenthesis {public:bool chkParenthesis(string A, int n){if (n & 1) // 如果n是奇数return false;stack<char> st;for (int i 0; i < n; i) {if (A[i] () {s…

笔记本hp6930p安装Android-x86补记

在上一篇日记中&#xff08;笔记本hp6930p安装Android-x86避坑日记-CSDN博客&#xff09;提到hp6930p安装Android-x86-9.0&#xff0c;无法正常启动&#xff0c;本文对此再做尝试&#xff0c;原因是&#xff1a;Android-x86-9.0不支持无线网卡&#xff0c;需要在BIOS中关闭WLAN…

B082-SpringCloud-Eureka

目录 微服务架构与springcloud架构演变为什么使用微服务微服务的通讯方式架构的选择springcloud概述场景模拟之基础架构的搭建模拟微服务之间的服务调用目前远程调用的问题 eureka注册中心的作用注册中心的实现服务提供者注册到注册中心 springcloud基于springboot 微服务架构与…

10 计算机结构

冯诺依曼体系结构 冯诺依曼体系结构&#xff0c;也被称为普林斯顿结构&#xff0c;是一种计算机架构&#xff0c;其核心特点包括将程序指令存储和数据存储合并在一起的存储器结构&#xff0c;程序指令和数据的宽度相同&#xff0c;通常都是16位或32位 我们常见的计算机,笔记本…

在Centos7中用Docker部署gitlab-ce

一、介绍 GitLab Community Edition (GitLab CE) 是一个开源的版本控制系统和协作平台&#xff0c;用于管理和追踪软件开发项目。它提供了一套完整的工具和功能&#xff0c;包括代码托管、版本控制、问题跟踪、持续集成、持续交付和协作功能&#xff0c;使团队能够更加高效地进…

动态规划|【路径问题】|931.下降路径最小和

目录 题目 题目解析 思路 1.状态表示 2.状态转移方程 3.初始化 4.填表顺序 5.返回值 代码 题目 931. 下降路径最小和 给你一个 n x n 的 方形 整数数组 matrix &#xff0c;请你找出并返回通过 matrix 的下降路径 的 最小和 。 下降路径 可以从第一行中的任何元素开…

【Vue3】Props的使用详解

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…

概率基础——多元正态分布

概率基础——多元正态分布 介绍 多元正态分布是统计学中一种重要的多维概率分布&#xff0c;描述了多个随机变量的联合分布。在多元正态分布中&#xff0c;每个随机变量都服从正态分布&#xff0c;且不同随机变量之间可能存在相关性。本文将以二元标准正态分布为例&#xff0…

多线程JUC 第2季 中断线程

一 中断线程 1.1 中断概念 1.在java中&#xff0c;没有提供一种立即停止一条线程。但却给了停止线程的协商机制-中断。 中断是一种协商机制。中断的过程完全需要程序员自己实现。也即&#xff0c;如果要中断一个线程&#xff0c;你需要手动调用该线程的interrupt()方法&…

录制用户操作实现自动化任务

先上视频&#xff01;&#xff01; 流程自动化工具-录制操作绘制流程 这个想法之前就有了&#xff0c;趁着周末时间给它撸出来。 实现思路 从之前的文章自动化桌面未来展望中已经验证了录制绘制流程图的可行性。基于DOM录制页面操作轨迹的思路监听页面点击、输入事件即可&…