逆向案例四:360k静态和精灵数据动态AES解密,用js的方法

一、360K

网页链接:https://www.36kr.com/p/2672600261670407

页面中有静态的需要解密的内容,确定html包,确定方法

1.1方法步骤

在下方的搜索中输入decrypt(或者关键字window.initialState ,进入js文件

在AES.decrypt处打上断点,这种类型都是一样的,re为密文,ne为密钥,已经告诉了模式和填充方式,可以复制代码。再控制台中输入ee.a,发现出现下面的页面,这是标准算法目录。

1.2在pycharm中操作

生成一个新的一个js文件(在这之前要下node解释器,不多说)

复制代码:

ee.a.AES.decrypt(re, ne, {mode: ee.a.mode.ECB,padding: ee.a.pad.Pkcs7}).toString(ee.a.enc.Utf8).toString()

应用的是标准加密库的方法,因此对代码进行改进,引入标准加密库,并复制密文,密文可以用css选择的方法获取。

const CryptoJs = require('crypto-js') # 引入标准库
re = 'GsGEjP8dAjIYaDNgCxOkJYJQrOECQf8iB+5dvYWO6ojFDqi7H3k8vSF5OJEleRWuqRO+xqayT+iqOx7v01UcsMqASFBLMCg5WD1bUC06u8AH5tx0/p9d4JG2KVPWWHASmAyHtv6YTfGkYjiwPikZjb89zyt8BNAXbtXhylW9EsCT+aSjUIXGnbHVOiwPoR/dr1KFo3ri5OJTYvv4SIykGm51BwwFS9s+UwtpD4bkUZaJTUCcgmnkjPx/l4eLwmgPoVQ7173vVia+N5T4gWTibnjt/QooTzmHa9iuadd8EU6ZICDXcia4F06bsMT/zo1eJsj3clWOUNV27urcbRG1jl6JntZqpuqbvgdS4LxhYjY7vuKdg+efBN6MREtaDg1mlKQjM7Xre0acnR9D/JUHb2k/ixD1A62TXp+oJaNy0yLtl1P8T7wiVG9/RtdBoo1UdNAO5iYOQ8t66NOjBDn7sWt1v7ZFtRowBFwfRgo04Wm9kc6Abq7FZqZqZZOHfgOJWT4xWR9uOhc8ONdeqHAZMsFGnMZS51wxZbNIVyWUs9IuVC5sCVi9GbyUsjBYNIdnjDuR4LiSvnQo6A+Zee8+huLlCwiJ6m1u1wIsNIQaTce0PA6KAUcJZRuw3JDncyG71Nv7DTiaJCBEPqKjz5A7K/iwarLajPSpJ+96z+XRFds4gPyfI0TviQI4tfqQBxn0GTu/5GQMEcmh21EXTLFy8qG036gL+2VK6UGzmLCPFRQk9CFuc24YEUZsAsbmUV8qETJn4XZaWk4UNh2JP+eWlGU5/2GrbuHhyWEroHJ0atsDHnw+wz9mq9T5pqKV5DO2sBx2Qh/ZW9mZpdjtVPmIJhZpGbDnxgk5JGjCsaXz1qdJr2SP9jw26rEUe7j/20LQvTF3ZCaw1wREoxmFgNR4wXo4CW1QUZUMoTLeE5U7N9IswT1ukcjMMY2L6Qq7Hukw6IgVh68yPysPpf5I/gkbuUGJXM2QOHjnELUdW3A9NPCqIf6Tc6EVQgoUuL+ZUsMBBw1gr58lHwnxmpU9+QNoK1PfV8Cad+o0fU+TT2Suxnqt4eRhm+/JGhNDCOYSvIWCLmq2rTJv4ILZXCDXaLbwvJ4M617Ieb4OEGD/z4YD9TNQIsiN1Y8p6K/2sKc9HywM/+SQlM8I5t/UmY5EgMJyGDfjZSr7fgZb1z6ymX6ZV9TJUcm3ZaERgmHdd7DoOaBeekE72KQ1+9uChzNNauU91/AvhiiSXohToltn3ViNf1kiKaFxb1i5llU+VRAbLUgY0e/rCt0+f80z84VE+ib6a12NR5frru6dEmkHLXFSt4R0/4j0EN3skY/LZ3Ad7zYc6jVmWueDVY5FZP4hPFdhDGrfj4GuDZ5NoiIRWkt5CbpjUfqybSvi0PpNgO8OALBDLIir8dPMeY7ODycwM1aAIWf68L/kfmlI5JdA+n69jlau2CZFmo3AqEm1szrFmV0+mR4uaV4sT01An7fGNX+g7E7MNxM27x06E6j1JqNokL7jYz7ruHoxrAkhLOUS3t26zkaK9IAuYClXMSDju+NK6G3epw0zUd9GIlhcDtk95CDWq1P351NpnPeMnXTU6t7JwoWUC0w65fsB5VEm7m+vV0Em6WRgVKe1smDHgDaQs4notniT2JnNNqVmgyRBkR9oxxDZfhWRCHXR2NA8YggZIszz6WgmxEKMBodVGL7Qk/b+8VuvsZkiyWry4J9yaqnEAI5Kj8clApkx3gr/kkI10/rZe9I19tB4g4PuQsM+x9cjCln3hnbFGGRu0ildEumP1d6Tk/EYwhpoQnISPN/viESCZnlwxQ/zQw5J0ImjLamqVADQpEXGLLL/aZ3FUOoLPAhrJ8hAr4QtXoQbu0TzMJWwA5cjIf/h+KpmCE0Br5xy03fMgrV5LszHh1p+z7Sp0QJduSaaFgp3TIRtT1CdaRNNOTjwitld59R9EDwVj1uaNgEdtQn5eZlQw/mKzGUZQfUrg2IZE8Eq51712ecTmIS0Q8OrhicvAWYCq4niylbyHZ+qoOGBLUa8IWy1McVU2sEhH6JQAutlBkPW9JCz/1cH7zV1L4Z+OPnrHJQr8fEefWW3UBPRUMzykdPizXl4GlG3GHzUI8FdKa1YeUS5cUa5s8c3+sm2cEBlHCtSiQSx5nbcFe7PUmqY4IQgccSP+g3IIX4u3WvhrwzLU2kO1rQgeqLsd7anNd1qBCIt3p0TLiCwPlgS0MYUfOHH5ByVTTWVHq3XV3/3936YCBR4mmphBPVBj4CIeVMS2pe5Hmqott226Z5Uu6nwcctJz98K7ELH6IR6usrLEsFBX6b5dmGnWMbqE+bO3ngM+7aRUWw2Z+O9UDAkfTRrOlOm8B+tnDwdbHF17CwMx+Kxb8zu9xU6z7lEYtI1eqAw2l5IkmwWJ2iLRdD5wPvmzCaN3n6FNel4s6r6QKEpK6X643kNbtvtTdBHyg8Jly8lClfVYkqHls1dC+9z6MQFFzCGkLtcB/shXjhe4bMlNQhE6xNxAocMlb9fDE/ME+rKrPuDQhbmbG1fKLxVjKsyCcK0Ugqp03LYfTBZ7U/U/lCLB1vHvbTjYOVcJs7/mMqYFd0wDVXOWCRQOLg2B+cEb4kBwevddXBZZBlYllTGHFpUT/zf3/bDBpskr/s45Lo2KzGZ3/JnQ+ZvY85MoHlBY45FUg2QHMjNSXLblSDzd8eay5duX/h5h8PioYp/OSTFVnKSomYKT9qGtHgGfi7Nu6UlRvDotAeDYf8PYq3riUNR70KBENYDTKpgrEeDZgK0iLldynqOU8KSyqh9YQCeVU6nNvaaBDi5IWb9Ty8Onh6FqwqBTKVJrNa39hsGrtRlb14f3daCk+zMVrGInMerEHKw0JdIgR0f/11r6uY6oHDnNRAuWmqqRgf1iRdyds1Snfh9hvuLAt861vZOQ/jOQQmSk+nxjyUTZBNMr6pZlgO8Fdl8JMYEbd0TF2EEduRs7adm4iKh5p/Yj247fiJ4Y4d89DpJjKQjqs1g5P/5lifppsl9kjuqEabj5QA8KrG+qhf0ATqMaon9cg4CoAo5zgEThmMp6b2EaEEPELRzQUbf6+G321V5mb3OKBX7asVoNz4OYDpnEonmx2wicTZKUgqjxwUG3+aPPqf5hQ5Wk7RNFRGxbf17J1CpvjY7caPx7xzIHl6endtn8Wr4oO7R7QG8fLmbPnzLXxomhHReV3Ctxnqf2ak6Hjy4m4RB2CCdcBGBptMQS3I0ShXB8CnuPQPmKgF5LikZ2A7/4qJ1D7MBm1LiAD8cEaZKg03wlMRX7rayhYu2C+1d+Kgagozo30HJK7FHUYcUUxXuT7+oglpPIqo3iA50dCyBdoLtXOu2l12R0j1LrEe9Z/byZWY3sqTaD40/LgsttzlqWMQfnvXa3qADJd7S3KszyQ0UpHqQG4yTlp5lFnMKFFC2FqgygiVr0UEPXGNZXencanU0EFAXJr19LeebEEWND6ofqTUOiRuuufynF2CpR68MKzYOhe26aGNjvv+4sD2IZJ6yZQB6bHyuocNHkNC7gbIKWWx0gWrQwBlDBgoLdZUOQDUA8zr+JtJJ60K1cvOD6kHrCoTlNOd8mtb1ne3qFdsQg8HhCJHD8gQ4UU+z+YTt1Sysp5m6N/TeXSbLp0vE1OYmIXgd7qBVqeolKehMJ/vVJGrMMpzPzeZcJmiwmkdU/PxwNraN1+xmRSOmWFaoXOex6UPtIVU1nQE9sa45Ayxz4NE07/NLfK4oaGhTXfWaCnN34/mAp3udYk/6QA+rUtO1soE9avLB6Imx4XktOG4QyHjvpcRXDOumeY5ldsjSntqXWI+lKjcGWNtoXEIpCIKEfN7kTRSgO4YP2FATUwws1bL/SCe+9B05xd+0cn8q+1GHJ5nvserHRfnjkWDgc4lhW2BvHAV+Fr4XUEdAXC267fgA9P8AtzgyU8MEODciNjA+TVR/AtX7QqG8Hlbf4EDkfodGX2CYGESfPrmiZxy/7i8kOcKngH+4+BII9EcpPeaOCXeq/fhR9tDXh8bluKp9ujtN6AbtiSSFyQBp9oB8PdWfwYBy7Kmmrsp4wgjN6Xb7fA/i4PzMmn9o8pehFoloJiT6cjvMAQZEFW6jUiMbw31HfVWerxjQxVBJ+OQNPUQhPvLCHq+i0ubewMBDun0+9EpDGLXxvv5YXgr0GZdnZR1It6dWPVQiomHSrcRzZ8KDmJ34oF6fdWmmjn68zZqP+RcPx4l5P4S3BpsVe+ffpsV5gAVsJFPLQppk9W8/jrYmYZfHK9IQDVDxNXLcnzYs8F/u9a+PHBwMJrSgaioAsXb3+GoqPs1/ciJeyJa9H3ngXHHtAI6ZhM7U1eEsTeLCr+9Y22dt67Xh7rXEoMVnCZxgddcQmvH4ht2o3gkl9fWFWizFcOKsB500eANvkSSBc/XvBFbiRPClMVAb0VChI8Raw7Ia0D66KCVI4tYppK1VVm7BzbhaU/8oxT04KUzAuh6/sk4Q1Sj6vzpFTzhP58jlCtGAeNQT1uK4l9Soji7Xyyn0tXqfR0QSVltu57F3YU0ZDTu2dqiDgVS0gUp5buv5YtN9UYQJpHNM8mYd7QU3NHbl6eP1h8V5VW39jzW8Lbp5hOq1ZKskx18ET3lsm4sHunhnSyig9mLdrdzMneH+Tv3IASlfw6EkNbb0y+ttvKyfR/54HQtDkCT8tDevYpjG0bl8qR4ZgAiBoyayjGYMoNVQ5P9byhpyMtPFlUuTErh+3EO6XXhh+BH1Dltt8z+mHRSacL7t2PJzni8kI0pnRakWi+VtMgVqDgmLyQwSZbbZPzwhLfgtfzzsyyzRxs/GRWUDvR3kouwU0wlWseBBCJ8vOCZoyZNzFMJ6DpqDo6WCcgKol2tc23mmynIzk6llMzzNWK5wD6PgaenUcwNt1bhtIbc+vUNaGzOMiJgUQGMigrZdnru16uO58465TH7ZkX3FGguwXOaSpGpDEBNVSoIKcpVbopTyfG0ajz/8dJGsyMQg/yXUQO8HJUJldtUeZAelH5oc3Eo6vVyayc+kOe9ZgxWeGGw5oijeZo653/ohW936J+TXFP5UImNdUb4QcilMjvv3Fa8ZIbrAkWGRlIy4J4M8Pf64tZ5LBNhV2KgO3i4ZOlclsNR0RK0flhUQOrSj7SKoFdzq643MelarJiH9dOACeXyqwv7s1usr9ZcSoiX9BeHohRkNMbWHr6hTb+zspU+hse9sO1swKRTYkJH9PONuP2aQHzH+e3dxjrWjdyLxjO/CqMNETpTUszIp37M4et4xPs+DNHUvK3hLByyF85Af67BwFZFOTZwWk0sCiyAOpyRJ9qgVSHeTawQDjaaK+paNpTZhgnAceiqn9vxE0/crYz7bQ2UcH9zJxoc2+CvTVK91sXQQyBIwovh0KKFToED6ktlEOC4wPJeJR58s0oa7FXdB2DJUTqmGr1WK8S2qWIvZtoiSAggToowyYRx0LC9xlZOxBZgCNuZBLD5zZHp41GnibrjuGurLrdJKKtdz5k3uIbEpyZNf6UAVKSDdWdhiAj81Gfo9iSi7RmrKLEX/vmqb46wWOjusX03BO5G0DHv6JsEJk2QXcGFceLehBYgrsTOWBYlRBWKR3ev2mt+5hM6iSn2TxNG3HNTNuq2e1BAlrEC5gTJz8FiF9b9gDnDXdOB8GcuAtkaRBPNkWQRANdvRSnoOEfypPfLMicjcSPzmENym6gn7yz+ahm3dLKDAcg8VUPe4eCd5MfikWalq/mCz1lxwVLjXfsqB/y3bVq+9PHLHFQT+e9bq+HPC4xTupQSw9/4ChcPy6zaaSkT/SI49AbqFbGfkE8wDTeDCZ+vyBy7FkCqPw/JOFw1w02fBlMe7ftNUufsI8qjVpBHB6LZ4k9iZzTalZoMkQZEfaACc8grMDOV/xDt6Z/H8r26aFjLS7NRX0Fr321w4GnEiN6mvc2yH1JxEMF1NtHY4UlkNoQqusV8EJerfcD7oDLCS8dYLmF8GDlHHN57pQr7hRV+egHjm1xAZL1J2vANaJtSsfWnOPPKyhU/YPLtGvGynXCTdQWOSpg+P2we3VcGPo9K+WtajdK16LJ24NRURGQyuHaQ5ikvShWrczCugAAEpt7trcU6PY3sqFCiUS/APkGIGiuulPV/U3y1ww+5/v+00+NVP5LrG4xN6qorbbVhOMa9hObpqGr17B3q32tWe08BTS93ATt+OXjegB59AZ1Nyv5psrMEkcDtlbBUFCi0kndOfHPNvg4I8ndhVRSaKRcFGNdJUB5Yag5ii09zVI7NvxwZnChyupYrsgoF2ZGXz9FFOc/MdpYsABVoT6wDMOIuFOFVxNGdd+gzrA5uHVsGyt+fi0FxFhuReG0+PjtZIkOkVZ4Uq/FNPDXbJHLwJ591UyxdfUGQ6Vss3L/BaX98hc3hH7L9Vdqw3blGhq746gB7h4IU32GzOnCDgk4ZbOs9Sh7F6t2hQp5bV8+PsJK7tTwJEwxVdcCGrJhw2Xa4kAQMms1OLKus9nbeSJfPoNRH9czbFGccbDaj7iCl/4jek1ApOHiXExVdNk+DGra7rgOukf0hSJ/lYRjx8gFP4d/IzYfcR/8DZOiceSteGUkbKanEoQEJ+eCKBy5iKuTzEL5+tzL/IVvDUKC+ViSAEV7jMer59Sr6EnwNVmVPUqMHrMPiCiwJEQcCjL+xmsPoaLRVZY/XBfggJ7SyU8zM2KA7Hikax95M1ehqgXHIqUyv3P0lEeWCYzkiD3OTsWFc7nz3G7P4bxOSZaP76ERV9z6pp9RMu1/+CjviuUhQOEjEwgIYdZj57YZcUgn0i5ijJ12Yi8Uk4mgSUsN57D3Q4VU3rkMDO88wMRYhRyOhInKZoJMhygkrFcxiriOo0U2Rop9aNY36mlJ0NR4K2suUHY97QIMwHNslCcPCxmAuROePSnirV7wLe2oOUJrygJXzBX66WTmeV8bnxLyZRU0u4mgRoTBeLUyZevtxUTt+NTLlUr4dgOE6U0VrtJDW4XQomQdcwrT7At1j8beJdEcrONrU8P4UViJHwevIf4nWPnvvQR3pAmZx5A2zEZq+ldK9pMRoyijFJFFFL+RkBkwHbbLGuF2lTRZdKHgINsVwe7cYV3jGhBU8en29qTK3lS6MlKM6u0Bi7s5bA6sS3ns1twVA+AnKPgp+b0GNx0D6/PL0UH4a+GyXIZipFSu1bAGqaqKpGz7mAFW+Xduvvc96A5bnCkLMgOtRYeqk4y1DPIYms0QD2xNnowRx82OVAYldU9A2gXYaaGtHmQvD8/Cbt+h4bOR7LZ7fmOBIsKhgp3yWT+U+O7SaFYCrIsMd9cGnl+pT961ctbOfGsr7F4a870XFjG9F45Hm3PbK6tv8VXYJ55VN/SjKuV9wDWA5Djeo+3nnXe2BkODDhrXjw5lrOuZsQef6fDEYx2UKCXWNbg4OrynII95vDg52O6jEFjFlX2vXqLWENDD0Gy27F25GHgAWPvFGuyKKl2MqNwS4SYLCtviBKdcjZ7xTyNoG8wZYXtXGaLI9r000XupHyfWRLDzQQzmaDHHVXJwPsvx6yzASWLdNgm/6EliOoLJiWiu+u7FKr5JBiGqccLzqNSbgcBX4xCRbsS8JZPxY6T/Rze1kxUNhYjTOtOUaYX0YEqll6N+P3XpiuedCPgmgJZry5AzJge8dKasd1g8q6IidnS0ZOeniIP7CqO3bi9DEtU4g+C3hdxz6ZzgyTq+01BDBk8Z3rYoFLHdpja/bpZ+790HLInEr97hP1aZPyzIHa/u3guETjVtBJL92u1VrzvEpamn4Y/33ii834AIyUucUorv9SKaJ20eC81MA2DxT9lJsclaHajno1RfZtalrM2iRdXAGVuatLoBBcOJRc34/wlZmXttJOiuwRgSXxpRmzNM6R7YyAqanjrobcIw/4F1i6IhH4ltqYYpoRfrJam/GhTFfa9eotYQ0MPQbLbsXbkYfeWLSZvvZugdFan4v3S0EyQwMoENmbK3GSipuvL9MWJ5s8vaATgAKyFKPr7UQcLJ1QjUSrhn3l76KwibAgGO/T3j4d7lOAuSDCQcCQFkpFLz3vZUfhKVXxHcIVsnNRvUxRCuN8JkXejssq+tlEIzazt0rGNjdOrVRTStGoeG/a5JccGx2dlaak8nnO2d8bX9ZW4mEniFFdJbioLCpzRAoJVA/FeFf0Ut6sBqjan4q+7nSAY7LEVmo9wuo1dhouGpWYvEeOfU2iPExvt7xlxhHzjshJFCAcNU0KLvfeIEyWGclanJpiqs82NTFvnJcNoA0ZkfAsEtmFsc4RdvqoNJrMXXeUsU/5mclYgBQ54Fhh6P/RH00QGPwm8IssHWizEPOtwS3ylHzLOT66TE/e1yBfAgSh0VNP3KqyKPMm2EDNZqKZ0ZWQsLWI73uM3bmhpjlYKSw/e/GJaDwhhNVddDVfJjXQeO2yoXqo41VcW0aMS0DcWg4bzm4yPUoMkoE6AltcF4hbLk80n6detT4pCf6uACP5DNhKPIdcyYUQDz2+TUGxEGOWJCkuTtfZEWeDA3JPrAHdZWAvW65u4m8WG03JAoIbQiQbywij6pS3i6mswKhEaUZ5QwUVD+mxhdozpEy0F3UotKN43lVLlzqtr1wA5mKHAR8aqozeZJPJhq+PRgVu87AUdRADdAQfefIg4Y90udQcvVIwqOTph0KsVnYVQEUTHXB8DTwdLUfY4WxmcHeT+Jk4/IGVi6QDzL45JA6x5X4yH6DTJ1x0XQSb+h77jALhNyyQiOj1KEq0p4zdyToSAV3i14dPrFObueBo/0bzfzA6hWN+qCEWN5Np/LQ5/YDsM2s5kbMUqAgtKTk5FvuNyXxPJrF0AzHBFbzIfBmavv1kq4fkxSxp/s+zxl6ofF7vK06EU6eAfWFgwUg+AWUHxaIqAEZAIwAMhcZKpu5ZT/0GB7UfZzZlhdeuBcqXWxLx5zc/7GgEV//KsIor/rNNMiPJMrI27y2atZrRrTYQqrxcRmT7L1vCNQSe/leBEOl0zNVEJST46Xf/N6s3LsRlzAQDxHskG55ErsUD0Ihj1JEFoh9oKEpikmAWHhQxqOVTjRbEo9fhkBQLveGcWKbi0LxWkSD2pzR8CKRULLbNiljeoZT4J/ta/ces8VhVM85hmS35kRp05sakhRoGuRiYC0QJQAIfTkz4sm68pDcBlTh1IxC5QtDaJIA2q9VH+rQfOT4Uhdod77pLnAC95NPeltsFOR/eW6v76c9sCvjCLnLdJFrabYtwVFcRu/1WO9Fquf3GS0HPZ5gLR/VVCMZqqRc7P7II3vakDzmTZL6okkgViOjnNv6WfI5Nw26pWp/EzDHEiLEt2e2/on+IvNMZPuTuSRuObespBwVWv5d0yx0PT9kZEdg/MM6RNpzc4cq6HnO/QclEWUpUErxrszBqJUG/fAPsl6H/3P9r9yXk6hHIn3zs2742vMmNJgw5e8b14SWVE8K0ckSI4BgQX0Thp7M9tlTWmKzVD8vajmp44BlqkG7jPH04HAJp29bw1xd0M0XoOf8w84HrNV6mh8hGxqZttCGold0wDb7jVn+4cL/eziVUaBVaW9geU+rrcJV3sK7AuVNxxH5qnL8KrSW6MVRPJHKiMLQq2GQcFXbwg+vis1ZNfLjVqqjAXv67dmdfoR0LQJW7KsGo4mAb+/WJVyYClr9Fcq2S+A0OjsbOxx3D7JvULT/gJbsrGMl+QT9UFfCL4oKJPNLi+YqY7eD9F6ES8eWbXBZ2lN3Y2UEJl9knD0f9bcoAIgLAQDzEcD2yD4KI4IZ4+2in0dfbBX3oFPM1IoSauH0k/hiAbHgwXBDdWXRfJf7llOyRgFqqOKHlLjQX+nWKw1eMicIrc+eq1Vht2xrMEza0/9GVnC9aygafZCLIULer0shlwOgzGOkPoyZMyRDEJ87R5M31q/xBf/ceQPQYOoi3K+QBUud5S5/6VvZA3uw5kDDlY3RQlUhe2TKMVlzggF37H6PWGDLDqSwfaoEjAxZkRgI4jUhyIw5MfCkK5d3ey4x2DE0jpBt8DzBDFbveWY7OflIeMRGnQFPYFTJLSDMrHv/DqGxZVBFdgdbphLjy8+PJl1qtPZk/VWB+fEQI/tFSsfKzL5g9uQQ28jWUA4JYfFLcox+/jBp1/3W90q2xeOCX15k5GbxnTdU10nuFvYWS0myr634lMKNdzrBiZezR3dD6f3vEeFeccPS/797npcP63jY24mRs/h71x801FjP+l2B3HUqDbxw3f5B4My4cBUdyYgSjGZzrQq4D+cq7LtIUkCb+nKJeSDjfwo8gEu8/9Uj12q3k8FdOT9jyqO9U7X8jTG7Ejx6bCpKI3MZQueM2JXlOBhA6upnb1QKbf2zXkeV3olX23VD+Tqh6040WkzYo3aptdGlxie13qjdbuF6PHXO+pkK75PL4vsBx7G+jvO27gP989IKBkJKEPOSDZKUwaRQIyG6ROHK1SmeTGN7V5QnS8uPOCKdzQVl98A5zgYX8tQ1I9jY3B9NVBwjkHsrCSFalxwCnI9Jeb+B+WeWrkhEqTfRvoiNCVgTqk+TGZd8R0RDiNox4DdhvBe5xQb4QgfddrLvxx3FiwTP4nRh4yeDc0xarwAGQ4kBFM5kpTt5cR+1SI45U1pA/RpqOOKzeanc8SHG7k1T6x84vGqpf00iz4ayA0+uzQ2WcniF4OlcKkFc+650fHUUV6J8OjyEJFkm/ClWKPXAwxj2W0b4R+lMLlvbxTQxrIC0L1qZrrCUxbqQMXEmjyWXx3kxrxLhtXUvuGlKu5o1p9pK9amftRFmBNcsQAEvjR3yymyKrzmAxIhLEy0jrMpvVq6UqqSYrhtkA/JWSAckBp/Fho0pPsv1sqYRj2WDqsHlbl2ro9ZuhYHEJ8yVm7JvpqR9uECmxy3Ukro+fBcK8j06MBQN03mJcuCCsCGvMlBl+WaTnMHKQKI+aT6i4g4Utoy5lA9W0ab4u7l0MHkvikD9elcwh7TOFZ8OnpkuizWGtyhSPRheZsKR3qvCz9RWj1IXbyNPp/sFqkEdFpZkcGw8DHuNcty9WmkCDD/qBmOHJ6RG754S6JcNJb8io0Y+5c+OjvkHeoQwKeFRglO6XZBk+EYhHYtOXJUABeRm8NFn5om/guh2Wk53EDS57pTtrmUQeCBst4UFVdupZkVZuWUPe40drjVLoRwZ/yksudw+tlt4F0BoMhLYxA6qMc38hWenTMKEak5xMANj1K2lOJSYfWn+SeouKv9kybwRuNed1ijSljoaaeAXLc3zUldNwzMrX7TwLf5a2mlv0RbFo6Tev7sDslqfiQEtqd1WPoZA7mNXM9qdXbyVAPyrXxz94n8ifHkETEOT/VxxECnlm5WUas2qSxBtkbPqMI4/M7hT3GkRlikUpZqJ5d6slIh3b4vKlk4Slg4Ef4gBQV8SjXQYfjvfoY0M5ZPqz6b6yLz2diSGH3LYiu62cUZw6IxXl39myKTIk9ioIr26vglnI+wT1ka9ypkkaSa9kj/Y8NuqxFHu4/9tC0KU/CfUiVu4CyxAKEqSLYB/9WOR713sKlYcYmklrfzP7Yu1uWUd1GLVJYCyDPpAd4oFJV+bNLagq2kKzbyZhk3AL7BIPQOByUUHmazdFbDoygMsr2RCTAra6Zb3SUnpKMWvSVPh3/mY+lIbKsl/EBzMaj/8go18UvyFgkEQJSB1NaXnsbGuNHEKplw0CCzcLEMNsr0um4F7a1XYJlyOVbgr4/vlQC28UDBGC038lla7VYpP+N50/W0rBxGNGvE9KVUwharkWsWt2BSPeQCS3nJbHcdc0SMnkIrAW+/0L26cdLVRCA1hlQan6TX5uz0VHDTHcqt4NahanH41FR5t1aYwJ79fZEfF5f4EfWmXZsf/bP6tpRD/cuTfScXjvNv7VUWpN6aM3QlHzZemAycogyVBlMafSD4/dL9TsQZlfGudY6di33u+irrpeBjYxlzSTO65v6FPI6lsbwumK72lXod/5V0alybsGiV8SEXt8PQqnPES8FKf4jGRXQ6QRgvaw483NH5KO+ioVaVddQkPVhXfUqXPIBrcjcJBdcnPFNCd7fjyUe6Tysnf5JLDs5IXbi/NMdowpa+GtIgyrC2gFVfMYK90AtQcp2+QK4xtmnJPaV8miiCNvpx10ZBd+Um0XaZRXD/UVkMKZcZ3ezuCWOvbDFHrxuj+jYvJMe3ddhnFWFeoCVa+tqU7sOFVjfYzCH8T2DlcASKG/UxHLSec6YTSaECuxt73XghluiUtm0hpf1mdPQBLL6jb1rQFSD9FfzHDks0VTxWRZnYMFVjfQ1526m+fHxeCvryCdeDEoMwUgpOiOqotquU3yi+14k9tJoREWd2zLa5KnsulUoYjQxFaGjT8FILTOt4/lT2cY9nb51BaOXqbH1O0YaeO6pDZzPsozK936vnSj95/D2NRSqcI4yXTjMZGmbbJjwmpvZVklyt4HCCaxLW3pby+PJJ7sOcYycTJ7o5HrLGmFbGtDm4igg1Jg9FvSmCw+sk80vtV6hjrmfi6Cq2YaNPJWAWHav0MKznuCfjK76Jy29Oq5G2CrM4DER9IXWONcp9BS2c4sZESoWiH/5qW68Sr9dPCsGkP027bCeYu0i8qg/LkhQN2rE6rK4br8LiaDIndpl482mMA1w+lGxSqD51tfS1G/W1mSkzybgGT+skgWUuu3dst1FXaEaIGZZJTwXYNPk5+3L4B7YIPeF/6ubkEVU0IKm9KYX0zZnneBG72JGZ+qvuE8HXBaRqzoWSyM0soxasiVlhxfSbIewa/PnEHEcCfk+xAoyVp83A4FNSYfvt+u0TtIpxcVVjEL4IxmxP02VMiY39IDYstxomlEpcTqZYmi9Z/y2Bcckv50qGLVTX4XuDMKMxwrBKB4JcbML4b9cy1u8xvAZi16FFjsg44igLVKZ3AtYDEdVWiCVWea0QZ6SwknKPWYqJU6z6vK5C0NBPAQjtGI0/sHdleiP7hyrLk7EcMxfNBbrgIvm+6uqYXcEAlJbBxM7PO5qz7PQd8+ey5H8qrE3eu8VGkBhr7c5IOziE0+IG9slVA2C/O0xNO8IysD28oH6DRp0Bv/oo6nCVjUcWXOGyc3oQ7wyqgbaRqWjkMHKjjxS57m17duI+NdCmnQPg1+tJ+o36NWUAZzJJYDflvF3CzTlbH1bOoEGl7WJZD4Cctx7jYB3CpNLKQfbu4c859TipbHGJxshgzU/oLgE6Kj4jK0bStSVlw+DYPFLqhj7ZWQ0am2Uh0GAEgXYvoHN3yCKr1KSmua6iGynuICyksmP7++Yi15YFkqPPhNgkybC8cNUxRZIAFVa0V6AdhGq0rO81UEGdBBp36VPhowpQkZZahXcT3yh1O+uhY9FNkILw2SXiKq6sd95Lyhkz6jVdBejsZtXAQpF+lohoyRL8/u1fbc+Qr5xVbrheO2mWUT19JOkjO91UFpM+v9TQs9L9SU/N/6b5dH8fILi4SCT3VDT34jJL7pHzyDyrLm34asYuAKbxqEU9KQmQko5pwg6TAi6+SpWC9mQCefMnKchShGhS7G7VGlbJYks25Q/3gShFMs75wgUa7WWUGdHQXnWYlWH47fRyia7+lopOFlebopMLgYZm0eYlRsw35DtHcijJjf6F7JGYhdT7+4uYTbnWP1XFJW/TZwukWy37m3ZlCfIdQn4eJszictQ1vRTClxLIZqT+nAkgyuRSsXSnuPoBZoeIVpbSyQ/VfbtI3uTJxDIGJaKja88LD1g5hmXdXDZiUvQ3T/cD4jp6J28IM6V4McSS6czAwJjpOJOezUb3eIme/TJCHCqoBGnZiWWcSKef5LhBTPzJ+yu3Aw8RH+B6BJU15OHKTAhpBa/+YD19GC3c027V6+Z3bSVV6KYy83bZ8pnrv/dcbtHWI6agV5fAF6VTfB/JNfSnOaH6ug+RGVP3yrLZlYvdZCY4kExSgW94sJKCN55vgF5D389U/d+hzYluZ/htucBptPbgutEZkBd96idUAWVoWtbNu3eM18hFw9bJuZp3dennGVIL0QgUKEuD7Rdkec/HS26fLouUBxbFTY/F/HgH4LseRBr/EPLMG/kCvvhj8z3yOcPJ+LLeoNf4mH/3N+CK6JCTDftuaWBRTqfXwWss8bfQLMVKXmGmpha0NCluHYS97QPpqZO264zLpgtso4nS6DnP9js6cTMx9qqlYufy6TfrKogHUrjgdEeU5XpJW3k4ETMDFrtrPvNdxGxG8qbXbJNV05mkXKyTpSLnoWJqp1HVExsoq6HrZty7n4T++zJARKfZfMesYgmP2aP5W38Ko3qN8vkG94GltsPxogqLRITRfPcBuJnCCbsc5UDq9+tXaZSiHF9wR0friyC/a8hBtbUX7h8kCvIT8XsXRziKgDnvyEreEIPsLr7CyqGbOmm1U2eZfX9IJ+rFPh2JVA9ZXdTeQ+LwDjI2Ent3qMBRg/K7NL+rR2fKVB5ZSl3naDQX1UM72o+kXChm5D2RwVK+8UC883hfLwCBHnAkwJs1UkDMvjWeF6qWCcFZ9fSygpdBq6umx5DFco0TGmOIAGUTruskdUSZolAXH3YxP5TshkOHNR0nMo9boCqm55MEzPSyqilSGOMfZYj4ugWOmwTSISEEDPv5g1VG7W1pYB4GaOa9bS9kaUQDtzeaK67z7agiGtN2ix2sTSRgVSVpJ6NJHtqgLdVywWA6eExompiCbIjT9tHIV0NxIJvnaK40R4i7IC4uM+Q8ZcrsYUa5mA+9mvPKmacK16GInlNTmJ26N2vz9c0B+NmtKBHq5wtbMnr2pqj350b3EuW8vBfspuLACQS9slT0GGXj1scW/bzk1U2RJGlTbcMAcHVzfiIlVkzp7RPWn9VTrq8bCtUgWOPRt8v89XNqEo38ofTuMhMCn+q0kmpeOiojfP8L/dhAQpfCFapphTD8jefYxuEH7/Eapa4wtytzORXoO6IdgfplR/8af+aCI1vg3bvl/4rIRlTCgkua/crqBzl3x6PdgLPsk2MQtK+f1q/zhADXgI6emqZ72ntqAnMku7nzmakjUzBjSrhXZPXxAeC8vq1r5tbNJ2clugOStDYjDNYu6+gAljDqjumQdTUsF/ZyyaPxMtS/IEC6Ih3gyEunezLiKwxcFsr940tv8XEbBvnFyT/mkZRQF+OZfEgkvqNuWMhf44I9rai2jsa5KNsLgknnTD/twG0QZ7jJQ9b7lX/+sZSJalJ8XoNuXC74ugKPkZrTB9t7DNu201/XsasbU7on/4/Rl8oVoqzGvXyxcjSgo9522HZAxJf1RbcUuMavLzisXYLHaioguK/HUCzlIYWTFIZqr/pFLYned+OnVwG9QLxNzqW4qelNuvZ2di1BgzIVywMHQkK0s/QDlGQzQvm+DjQnTeT1uLQDQC5W3iLreF8j8rH4nhbfXW5Vx8VHbzCNMsSPukYKROngNNAYkFYUfVtatNdxUW+FbdgospTShBKzPEBnVDEyvwT9sIsmepEu8D7VEOLOz08sK4+c2H0VOTOtnfazn9QNkZZJB+TPfjpLF1mq9KEb+SVFausFdY29B3lF7lJdRseXyxpbpUGvucUGgq9vbmmHt/CcZeC+fXU422SWt7RoAuzY7dobeemLimT+RHAqhYAQBk5duDTZUvC56RtcqQiAOs9nic0zw7GqjU9je3Gj2bTqB89E6wLfOqnwh5fcHm8OU3IncNwK+hWdlfj0RsTBLIvlXPRcryEMMI0cSP/1MAosO0539f2ZJM7HbGQQN/wT75rIUy+lvG0pF3GPm15j1lmuKE74hMMtmgWWghr1Z+sUaqeb/f7oE+jnktaOgkAyJlZbzyCuTrWFC2h7b/qaOuCeDnf1th5BAinRJm7Do+oRHAttNjq3YTQ6ilqkxUFJaMAd/mY8OQ/U3U1XidqPzY2cs1CCK1lAFsPLd35JzXQQa1MBX/gLIeOJIzHYWm4LqO7Ays9UYvgiccRLog6TY/ra27cMamqGLA1XqocI2NQZMMVRxGDM05StsbUzlWDTYO2r3xhXgi98P51ZR47dIxUYJql3pXlnAUwWjOFtZaqsRCi4xrPHLpyrcQqYAtyV0DrJ42htgtH5sAQLktiXBqsgM6QYqrSLeFPywIv+K6f1Prp4OW6lc2RTj5hMORX9XolBvKw3sXFVZg1sik+oxYgfb/ZktRB3ar7Eh92NtFX10FCvLLcH7jJ9N+ZSXhyA/xXSNYcZZXNxYFhW1OK7aOOnnR3UUqJJeLQX3gm0Fo68j5SPgMYRcvZEQK+jnEpO0ZYqYnHstXACMYfq0wshBgB4wuF3OYGT8LuJU10CFwYySc+FJ546IqxS9QCU291J3qDUTlQVRaB1UofGXeSyCZiiRu85cnYZcbjNRHj7bMKDNoYVXkiGuQcpVfZDAm9G5f9pNM++sdTiw3jbzCvPwbLODM1meZoA2so+nBTzPw6A8iss2zPFcnWosAnk+QIEtb3oMspG3LaTOttIZQ8Pxt0RRJrM41XlFmwBcyQi7vCGS7JFCMd0Nauk44KJu+esGYvQsNGyvf2Vi59pW+epNxCh2M+nPlpFY/4u41kqHlrYj3pb4HFCYG3CVqqdUHXQHaSyx5HUxZ/zQM0b1Gs54fZqfhX4g779+vE1UyLDCqhlEsxEo/LofKF+M6hrKmAHFMs9CQ6KqrOZhoaztaJDXUYMIvJBKYiE27broK9MBoKDQruROcBitQTj4CJXeGwpeDPj2IFF1OBj7Fjv/5xeslVhsqktvgwPZ34IwbvDB68oI2gEF8F8nKx2F05SkmHMibLAJMFvqyTQm6JS7Nb19j6Ir210l8fXtXQPP9X/MSH0NLMdtG7PjmseUjkNSBkkAAPpWjrHSjgkuIgYelIg/+i/jtAYJNL6OM9xLWqVafApp2fWfQGtkmwFoXVCXD3Q/TFvVPv/P2iTERLjozAQ8OXtE/WcyZJ08P4MDlumQHsXo5GGbC2StY4WPTGiwTJLtYI1FLzYZyKeD5D0sgAhGy40qPQuEvQYioHPNM7ncAXaAVFgLXGcKys/VtH+kOs8gJiynFDcNKHFBWwyrLo2TK/FbUPkvqL0mw8/yp1QpW+r24UlICZxvOz3Yfh23knTUdsaYlgsTUN3aX9vgzIf3AdwzpxH8/F4SMD1Wj3I+nfA3uu4qnLDDU2U25I5IRNruzNz3qKJzaeNjuXEpAJBduyPIsNk67NcOiuUWWJaK+BMqHMBIbR+IXShmVotOTvcjkHchFjlSlKnYMCt9HGoe019UFApXnQuive100HCcgROcBsSPHYN81UBmy/SMRlPhtUNBkbGPFXXPVKXNBInNv5Oi2ar+EtK8k0+P7XiS14N1RFPV8tYR7Txe6+r8j8ZzgFCBsrVqmCUYnZFPrzy0kz01A4edzpbbfiXmMsrFbUQzDAAqGH/p1rwj4Kb8D/PJqXAGhmdBx4XmlP8ze2AMzIxDkir87ALez44yJILBTBe35VXe1ifg6QPVoW1Hede9m8j5ZcKIxpfJHyCiVK6gzK1H2N3rl8qfPZeUafkreR4USSqpu2bKZDw1DO5yr1fn24jy+wEmVLbInQ1b23j5F+jRhHDe6hI076NJ4/b7/uLA9iGSesmUAemx8rqGK5vUlOznvrRTYyeASP93iYVL6ru/iDvGyBrVA/YpF1gCQLojS9LxyBOAOMawAxbMV3MMwuRz0S2buGVQXDKa98p333lWbUKZ3CQR6feeRQU9X10MPnbdbMdOV+8qVZJ7qJSnoTCf71SRqzDKcz83mIZxcdsSwWGdDpr4KPOzpF7IFWz8mX9BlsIKGW5U3YgTd6tWujsdICezecsZdScPh3KRbCkF/n+bHReMgUWFsAfpeMaeYzpxg2PNJtTUe8TR9MypoyudQk46tovVl+riNp7NCvGLyhZAkFLUyj0KBXz2SqS+51EJHEVG8RsUA1TVTqWHRGBGgO4qda0s8g/3ZpGRthdvg0o8dS5nIqG3FmZTa4vm89mwV30xuzSCUDQEfO4x96n45BfvoMRY/uQeLjDuR4LiSvnQo6A+Zee8+huLlCwiJ6m1u1wIsNIQaTce0PA6KAUcJZRuw3JDncyG7AiJ7MLs1Hf/NzUPTs/yrLU7/B8yx1ZxxqkXzUJdDBS8NLDdOpgfZMrRdhYGOd3iQdxqFxoMr9N+iQcmr2PQflVFAB0HcXCU3WfXTu+DxJirHPwuv4XY0S7evk18HXZ40UBFpVWQ/84fDeUBUN/4lnp7Sqae6/IOZ3ncZ5gqvoH//DhS3JBDgO7I1K3A7YiuE6P/GAe9Cz2nu047Fw7l4b/z+/aY7+0ecpkCvaC+8bW5nlhRsHhTPZmXctI9UoWBmrfcgeRcMmMo7qu5XnFJrT126fwqHQl5wN4j5ZDHTdDhjFOEYls8yeqIAgqDP9idBJMVKfTTRs32Q0pppf7k8/mmwUMLaif8agTpxrTjg4AY0qSNxCD1oDqbcqi1TuVNq0YmrE+FTvGWYKso6lzOZx5ejOyw+tizDfOytJKyqh2kQkLi7Q2xYbQCJW/kgWUYkzWXPS7+LlYPzoxODDBdJVubmSshoLNFenMEQz5DXoAw1ELt3dY/4jtvPSecwuwAD/p/vP4PZsULgvRIyXLM3Vub0MimiBksZ5dLTHUC0Rf/WKosKLpBb8Hc9M6nq+MN3dOtJMEv0VhZyV3Sl4DsaBARfbqr4VR1bGQXSaaM2maLmuE3cdM9rx4X7nWGZFFTh8AL+1hv4noz/Swq7c22DM4TmdH1JkUh5WQQiPru3uhbcUT4qjWF3yCpx0hY4LbQfv3LjiwW153w3kPO8m1e64XD+j032xIXcZvqBKUOLgJbyiEbGcUoQAAffhhPFkEIlGUcG83aYYx8uu3V21HLZXP/i3lqI74TDYsFfKhNTB2eIArg3QKTh84jxmC/ZCV5p0ATpqoTg+5XEgigQO7ssofeD1G+J5fCvtQCCBGSJpnjwzANpRCfMuk/A3ZF8hK18pFSoSXLOzjEi+TjtomEmoKzb4FQXWoDh8RsMWUNKvFrPj7ra8deQIzar9Wb/QB2E5+crFdxtC+xvGpzzWxic6j0p2EYSH8QaAAt+mlj96TK9gVnzXH9ocYUxU6YbK3N1lYy0O/nrcZb3kflMvg6Al4WUPZOWJZJL1yz608QcQ8Bu/tbrUsnPMvzwWkyg+ZWnA2Aym1lhmfzDCQ9OXvNClWnu4NrXMOg8NAXAPZieGp6mbfxQ4SmK+UpaK+HeOCybygqKNWSaKQj0W7fzqaVmOmcsqmxzENYidMzgNefICjLmSMLC8IvBEzsEMaK5uiSsmaI6c/5JH3JCc0jUeO+RPLx0Uwb48FidJlUZeDjy25lZTs4+XJT5rob1O4a31U/ML4OEoJXqbdgd0Xw7KQPDpU1a7tJPlxSNooQlAIFtjRPl0koYdHLJTXcYC1duOqjxNiVM+RklAv1uDPH7I/maRB7RTFhGFVvUDqHomD743z7B8YdTBsUMTfMB091UIX50GKpgcfR0QuODTKiVARIlUqa6GaEMD0CcUnegeLey+s4ABjeS0pxAFWvT3jz0ntmFDHuWBJv22ZbLRaNYIkzvCOfFoKTtZ4tQo9YYNgXXgVdeR47RxkYKXsRH0lQw8W3cpOm10GFZp8uqzZi8fzMtXIPQeLF9EPCu9/FaKHGQQFFPqB05WP3aoqMqZI7Lvt4edJzgyOtwkoYXEZ6hcNoWoUK9kGkiEbb2sVK8YLawsMico2xqh65S/16iFr7MNFPTPaOtAsY2FiuzANgAScaBSo4YYTt4Cwqh6xHa7Sb3wFbjesg6lwbtZeQBAkoY5DlwDB0Cjh/n08/BxqDGW6AI4hVWxunqSd5i8icXSckN37yoWF5GeRinELa6zjueVAWXE4wfvEVt8fpCE/C9kbWEdyTGGv1rRkcRmyml1obRMKRBI+1ouTg12y8a0Vn2Iud4iVcaXGMXc4VU/je79U2o9YcUoESeK39rlgCAyEPhEFVMN7Q2T6IACgSC3j7JbK48Z2Gvk18gMr3ReN22CSHdTOmlPS8qz1Mn4Dc63zImndB394YHkokirfUW73yQbbGsAxpXHi5Jpq38d7XPeD7+k1v3KFitL/ogKM7eiDItmzYVza3daGnu9e+8YaHeJOQHKCKJt7EXBCxhEp+R0HKDrzU/QWhyx1e7kC8k+NFNr+59oDnPQsbI/FfidA/TkEESImdPvF4gD++/Hxmvm0NmXDbK3UuBOp4pFU9cVJSWPfSSX+DeKmFFUEnoep2OQ2Qs1Kx9ac488rKFT9g8u0a8bKdcJN1BY5KmD4/bB7dVwY/TC/iMWRh7huS9CeS7DgLesnNpNnnZIRPxbAGpUWf/rnlu7VKH0PVvjWNcx8R+tXiiFEzndrLgn5ET8KxM9SfHgc5rfyuxHui5GGOElUhhZRVWxunqSd5i8icXSckN37yoWF5GeRinELa6zjueVAWXE4wfvEVt8fpCE/C9kbWEdyTGGv1rRkcRmyml1obRMKRBI+1ouTg12y8a0Vn2Iud4iVcaXGMXc4VU/je79U2o9XWxsPd24W25ZBVvVLaiJ+FhvsQWNu1wI5VWRv1x/vai40OcTlDKz3qUuY+37H0Yq1UDtFNBVHRBqh0VbSAVeN2O9IEZEImJq1pBFyTeV5vsjAwNusnyaF+whCVoxdYCafQb0nVYucnZvhNEPZAE92koR4t/wQayxxYFXm2uu2KCpGgLke5HE6KPlRg4A9Ag2t/lVVxhSgCrujzXf7xkOrI2TJ6S3M2ilhUbrY1XJDbAGE48kKKsWzJYE94A/XJ2+Dc4+3eMbTzyvns78Hd6t2F2Jpvdr4GnHfiB8aF7qVa2hHnNvFXbJPweOcvJ6urs/wf2dDtlcQcX/ScuwigL/kqdIbzgfzaI7QnP10qPXsrqKxtp0KWKJVGHzgbamD7oZmdd5MfOqJ+oFHisuVQsrvZWuxWxWIsqINBxj9TqMeiE/vofFRI0ob4g/+sYrGQOZjvVi7oW9LZ7bOCGEStK+Epo+chanAlgS46Q5BGlIBHMnt5QDFdNVy5neeKTnjCHQFkZlIxkF2JX9Zd2sdchUQUQhjPa9VAWjYco0U40o1eKBezqxOL526wRR947cSzwQS1TnOYQu7gaS1LR3AZNfa0an2fSy7IfpUQYj5tFqv26PzrhrIKnGwRLTk17OlOuhQVwpdV7R38E51NT39wTksRux+8KFfC+KaOYjLJqEkorvURleNR6I9HoMT3R1yO6UCFtjaO9AgBRuy8rbPz1Q4TiYJMWy64y0Jdc/DBQFrh70T9qRw1e00Hm528QiN49+z5Ds9eIOoOzAQIhf97ZmQKaQ0qYPU6mygTRf9quXdXH4CdYKI+0vfo07ecmpcj+KlRT5r9Y7qgrvfupi8OD5IKEaMYT9ugxneXmpRhEGm1vZPagzi2K16YsAjHqczgWyVmBPDGAajJNRfZQsM0aBHeB/BevOMHkgTV2pwgaf3N3q3MbPwZhcHGsGmhiwh/ZYWIdeJrXlxC/pxskNqa3c0zy9AruY4AD1HYrWvkJ1/tuBIifKg4p5wao0SkDvZq3NbY7e/lo3QCWFjUTTwyAK/lUlgevp15JPV+g2sKteOlzqpXlrbEvYf5AhxXGFFcWCuGG4bCY0WwQ3m9qFBvO8WHc7qq66NzWawT9kbY4tOU//yJ10zxM3HoHsc1mqFsKIBnhS1f7+eTQavjNtktG6C/gE3oKYHppiCAKuNwhaPEOjch9ZSWHF1IxaXq3aIxykpgHaX31wmdORjY17aOOdCQlvOeaE1OVqq061eqDrOVue2pCNxCfesk+hhKIo9ENDAbVnetCIA+fBT8b3cyNRRoiR3QAfOlJaRr47zQGRfQc3iktR5RQ5Pue4iAu1yN19+xqpOW7XNzso6lTN2Hz5gSWygCcgB32xIimX1DqE69cZBojUD/LboDZHxaqbsSyT0ka5dDX2T0TlusHjTkCJFzQ1iNMYQVe9rvf19+Li5HPcaRwwBIvEMHemuENnXNYIkzID/0AcTu5lMGfE5tod1v+PgCvIh+3BKUQHj5HwFZDjJ5v0mTcyQwKeACfdLIwq5e/NHSyK6Y+qLLzAXwvVJcFUMpLCcK1L81sZyEXcGWMuJ1W0WSqlMVOAZhHnJGUq6EkgbARW0C8er68hN5oobz4i8PbU5Wl/toDVR1+gXKuuTySa8CwACGkLB65MR7xinvJ20778WnTqN5znCJfm5vfimks/FRul1qPHehgfKjGyZ918V1KoBkK7z+l0m6XOIWFynCf/3l54/5q5AsdQ0ythCIcc/trNxUsCFZl2JX5nZ2EUi0MUCG0OqIfal9c7yIJCE17G+RLBvxqgISzwKFyXVRMeyJs4pMzqhpdMqw0Y+9Mv11el4S/Fv+DyuSGtTIh1BjW81ju9O90oAxuShsxkN92Ew80+35PcZSugXDcj43LYh/TZ5EWceev8Z8Yajoz0/CgEJ+YJpfiUCtonNvqUeROVBRbZiN62TKOZKMekFC7MYQvSesHLEmbJCBwXG/nr4wdribKyEo02DUZnJ+excpGYV97ZDbINvaGsMYLf4zkvUJidQUKq4clXEwzx7jktFj1jKUWS82Rr4ch5DZSM8iCKXKWsNWDXgyH0sXkgHlSkmRADbswydfaeu52QJtnTcEMufQvV00tI8LVjuOnqAfHDewJLWsFBYkQl5dMe2ASe+xmQAdYb2XbTMpz5Q3GpsKZB/CumIYD5f1ywOt6q5smkBEZCRxr/3OatjvQwpvqhOsBAZpVMAXTuBMWbDRzM1TfhsyiyNMUwj8AHnVU9zgbEcH+8mHJi7+GXCxLeBnsIwWFCtnjLQ2bL3S/JwcNYK+fJR8J8ZqVPfkDaCvGhHKgSWldGuOyDuIU4cJfV6nOaxLjD4PBCoc8y7PUef/EUC+m90r4GNOk/XGpuCAB3JsDQIzQKqVSgur64ZJiHOjgXcFddizeS3m+g4sqNJFPRq96TdoMeZvaDizGWmBbCH8LKFA57uGAFNRAcp6EQHFHUWV4K9qaRdZ9bFN6via3KLkD/F12D1Ynyy7fwkKksQJCT5WDwseCiAVi4hQ/2omzWiArHf0ysirODa+d11dke9qpeJ/Zbl7dFWlvH/ZnmEefUZ0QpBd5VYph44gdHT8DwlqhZd+7ATjecCRGuAITzPLg9Z5mLvKQxmeouvoUKqgb1KMiMtLjC33aW0P1vNZiEkobfmT2DFl+qBhLiG976GNyF4Uu6r72HvMYltiHLj7wB33TcJY0n0Egda7WSxJeIdelzJnc8ctKK2WabIG+oZCyhrjtKQ2CRnXaR9l40DP/NJyWkXoBdyq+Tq4O9/l5dUc87zDiCdiU/COKmCBpbE28Cg1L0NR6XVzCBSCDhqWm2VM1+GVvGzd+tgkVb/9IPnJNEVcNS1BJROuCj5CTAq8jgPd40XiQt0RCFSyEumMud/7VBy7U0JA8JoiUxw0zr6lS9jc7ssWPSvDFDNknRo3OXNSvCyabVtQkqFIX9L9YA1C/IR2PqS6PAUoBVPtwyENk/4kF49ubvL7QHehDzoMEWpiQ2Hwkowsy2hqqrDvFpu9vKGdI2bdtrVv2GZRxGusIiYgxH/LzyMIwNzY9VIASyAfWtyCJH28ABm8L3UcWLDemyMFFQKGdn3e+3QBdXao/QYgvV+6fW+84Juj/xgHvQs9p7tOOxcO5eG8NaIcEnGzOUf85eLPJHjgmz5lazfp7ACe2OU/DwZBp4PAtiUTPF+pY4QsUXxBkPZDjaa4eTFYyZ/dShL7RTQlKDGjk/qulKqNHI8SIrEqbibS9eUkfV7R9HF/z4O+XeM/ZDG9TJ7rtSo7CRu28VK8U2aF2RBm+t3pYhRgnIDI0jcJFa4Wcj2SwRMUQ94PTf0LXBIvQnDJnFz6x6pgUBVCjOPeGMECwVTA+9qRnoKp7Vr+yig9AcmqmAeK+VQSujajfimks/FRul1qPHehgfKjGyZ918V1KoBkK7z+l0m6XOIWFynCf/3l54/5q5AsdQ0ythCIcc/trNxUsCFZl2JX5nZ2EUi0MUCG0OqIfal9c72Npzf9BxURIlOFEi7J1MIThfRXCeE92F98s/gSsfssrg8OIHSwtTy1OJp4sQJyHbnutK3Ai8MVqhUIrGVZeYCUTyqSI4AV+G4Bb87gVwTQmPUl16JM1HsCKNLl+cJnRg0vaFWHVAmP2OS3VmYXVmQfB1xWpFUaUgsv21ynDHldxHT8DwlqhZd+7ATjecCRGuLfk3ChRqtUJKWLua0A5rxBYvCLKJaWU+9CImR6bix26sWYQG9b3QXiZzr4XS4BwB1LXlv1Hbh9k9kHpj+drKzKHLj7wB33TcJY0n0Egda7WSxJeIdelzJnc8ctKK2WabOsN06rcBEwpK23HJGGJV5wJNTYVutNhgDOCTstBeoFNT1/Nymrsb42Ktar9qOa8q0olJGNbRJa17xX5XpgFnzYvOUSTQPgVGLsTBcr2qEmigMsr2RCTAra6Zb3SUnpKMTSbuhMDZwUoaqUjMZFPOh5ZpAKGIn9ovSipK6m4nDfYSYjDspZrD9gAKgrM643GcHvWF+718EscxUUmTc/wmbBpTrJCnTb+or6QyVgDW2oe9jMw+OqBdwSfdYhhEJimHeI0lOcRw+5T+rytOblJWUn7Zxah4kpEUeU0OWBRIT0ZawPbO1CSyoli10/XOAVVrq1ehmv5FDBIge5zvKqsYA2rCWGw8WCaOT3vyF5AM5lM8UfmbVNPLLhcwfa9TLz3EvcehN8i8q9ScE+xEO5nnQDaQRsfN8rRiIUZuEmptp2h+LRO3NkSHsMJcU92kwJ+/tK288oGIyDdx8dpFqPIifiLZyKqngsvuW530mSieiCKIXQpjqUHYL7bc3z6xXwdAM6YQWqPBorv2bkR1o07dAUY3ujHn+ACSzOAKwfro5jouIGuHNM/Zwp0Yg7aKBAdF+Nn98wQ+98L7yJ0+ysbpt6/eidWeJ96mcQ8KOwAq2ipUuaTj6mv5xTT/uLhowTFg0+rJCrP5U2HUVTCCZkTiHYd0NRBCTJs4+9q5DBftrko2lJx8rslCcJ07Kl7TiLQwpciRQ8TnXcv3gYFiFFVu80bn1xQl+JHHx24R2y2STOBxCl9Ofr4rhYuhbPCRCy273x3+A+uN8NzLhF3VCX5uvGPC9SqnKUjkcXbKLPwFgkQBjPsxkrqUoLgRi1E+lBUWkdJj33gpBGcAizxYX22Xf3TGTnhULCfl+V/ONNm6d3EoYoqcTAQD6CpJAE3Dg+g8+JMLfJZRDBRxD1JBjW1zsDH2RrUOtIbFJiOknfISSWa/YV2b9U9ynn7T8b4ta61FQ7NPmGlN27zz2exF8S5ErxxewIKfU6GURzKdg3KKb7MBDISgFZ4McxWR2CmpsMFS1aDEMl6wKyqcUoDTgDx8fKNeBylWft4YsUkxQB3Nl9zNRe2Izncbr64D25L3blROK4HoRSVhIPYFuDE+R2U3mAlqcH6Zw6xUKrfyDHXu06yS0IVv8jp4CPhqgec8Oun3vnBImiaVg/FwT9PlXYL6dvYEbo00zrW51pJk/1EckLYku8R76uCE3sRbj+bny6Y7jBNOAS6uHCDaV3knQvHmb0fhP/0YdMOeCpFTxSq/K4NnLJrc7NdE+z9giYyCtdPNgt1AyrIaeStyImy637tzKft00ns0CFmbhLOq4F+MmtDEVGCQ7HaAxmDz/0yq2hTp6g5lAdKP6qNvAPw7KrPOHmZpuT6zz5gQXhC3G6qVIxGN7Tjdn66eh6d44P7YPisIV2Di+WyEYArLjZAqsN6+A+MdcDyMWfipxRxx/BMycPXDQZk/K01PSvNLOxV/9SY4YWvQTs3LK/UhGHLwOhwpEMQsCBQmPx7CBoMjZFhtgPotv/Ql8AgLQV92l2XSaSZTxz6NiS1490+HpVVafIPPyb1yN/bnMvpgI5/8cBbIdEn0CRdFx8Ej52WAz3xQmEtKcJ6kQId3mpbTKb8wHpGqw6QU94jN4QEUB8dhuPbAl4SHKW30G/nYIUgZSiKN6wyxeqXdHicr8uthS9+WDeWYnoNf48Ccd33G06pLet5NFVG5fowijL3Qcim/KmCkh7oyMLswduix782fDJ3sgWl6Z7fNUK/8E2gkQAbWx/4EOjpzcc7ZalKxZVHn/rxQODtnu6APN9w0iVz6Cy6Ur+PNwhWUjTElG2khsyhbslI9rZio6fxSmQPraWOuvZOEuuMPV0h2Rmb3iaZahmQGdkLsNp6jhD4kttIPG2Omw8x/+O74aWcULhEveRWjjtpmTjmAfyrManzS7O6QQW5h8ZjOtAxyEP/MC4Gk69Ecp8TfDqYqgMAxsh8A25l2n2RdiIO7NI0pDgBIe4K0+SQ4/2rPH26PU4BUYrEarxaWwbH9WVpbUAVxPZWRNHIaACCAfSWNoaNT8KjHCFtSWuWWIkr+SKS6V7QwXC/iwJx6cQFm8xMFgxHSH/cRYGJ8uVJLrNppSy5G3tuZeFTltx/bujLWz2XqNUC6cU2+Vt36k+STxQaZ5JJyAzN3b+jQNECcalVg92D4EwoFkXwvV4bUoNryus3jjp9qTD74IC+YApnZ7g4wHAirJezowO8mj8Fn7O2SHPzcXhbKYwrnkWbU34haBLkPF4s/b/rbsXhphdc2qI/HM4wUu0BWWb8NDoHcetoVPHLYuy+ru8lbjMsxNfUYIGp6y8NKcwDxlbKNCmJ/1EwyAJUixIsGGVPtOG3j9ShjKVUaY+h6+v8O5vLN2A1Ox+nsbmtMg3Y21eQZTGspeVSVjqO6gw5G2UnfNkXVzwjYpBXfWNHnvSevmk7uz+5VhZrScxk3BcRajBuKWcs+yhoepsRjDTkmaEkR341v813x9SzQ1tcce22xgsJUsUA7qFg0iwy13PzotjAiaBa2NKQ2GJJT9l/Ou1M8eQ63w/cNB2oqMcSS/QU0DwonUxkwA+0inBrEm3J39eWzYjAOwX0LWrdGqaL4QjPFJmQuEvwuf8zbc9Kn4AVvP2pvd3ZlGG40nuSaO9ALtLyLv+7Tac4HSBkm5g+w1dfTdpci9LAQU9iUECQR56Vnfxc/qshzcgyPKn2nSM+7P191D0KivJ/TCxrRoQnGCocsIlK9qiYGGghXInNIzb3dHlsA0kb7BSi5aLkig4srI9mFCVEWriOf6EJgGB8n+OqwhwrVqRhxmjwR5vC+tcTZsSr4dmWGMi89fK4/32uJYWhaa3tePV3HZPThj12MDhoawsBG5bNu58N1nvX8+xv02kXjue5wgSB09hAPfPxHcrwWj4cPVDdpU0+Ifpwj0/1hoIAxaf7/alnOdREzgC2SmjGVL33yiWvibbIluYDxXKVwQEYoBbVYRfMP33WntTmN/tzUpwC5vD8gNPZ5DQd6UdkaIWexSwV3p3EQ566T/bPgxfC/eRxn/DJZ7Qr63UR85YKcJ/x0jddShpXwzVqEctG0XkdmFxeuVznqXXzrYo+oRox5Ubk4ch+UOL4lpFddx72/JDyMRleoQwapJtQSw1qO8Etz9cNOmryzVB1I3sJlNibNNlhPW0tS0pgh2IL8XggBw9W7Hq5ykY4CDZANmXe+/HEfTtS2MlWMcEEUbeiDNuhQe0H0sX3riBLkeJ1QVqInWc4oUhlSwoWE15wiBJ7RAphHHz6IP5MJZ/iwHIz0LAgezHN3CIjeNNTWm09BVsnUhEGXXzy/6ma43p5NyTqgl+elR0662DrWzIA68hroV9PHRythzZpJpFy6TxONuw9LXLNu9fq7DyOyGY2RWd2eniYrfNRTNQVLecRz9Yr2u8Zf8A19X0CnyxUWDO3xvWzJChveOjZQE61Ytd0V5S/oNHV+Bq/cxYVnGYmt4HI9PhKpWLjlSHTxegBixzvoyAQUJN5fhUX8l94JOv95c1kVDIRGUGezrUY4c8s0wg37etcxpsD04BbexxT6RcR3SngCey2Jd9MAahDEqPpJVbQ6Kxbq+sE/ZFDL3fVCymevbE91mswFoAJiHi5J/L7yeoRxKXAsEEMnYBlEkU2oNyxGWK4GrshcpsIyVzlz9a9YDgZ5TdLvHtaFkP4FtX9rqr5nN0HnWZ25ioL9YLg94q9AWIHR9gYy/CvW3CQ6dJSrjcVZskx+gsgBHaUwZ0wefzsWKn3a+peqviQ6H1aJ7plEIGqGyX/xcK0TlCsKddH4gRXPrI5ktAuH7YYLc/A8PT+wmzgDVNofoGKQJvBfxOuo7Ox0/co+mkCfv2hQqRL+90utdFJdDMhyMtqxPbMa0PsuLFgrACU1k+EuwLs7K41ZxVpVSmc7Klh22GH0Ddty/G4R19nAv/wW89RAqR3v8tAAdXEmyG0WlyVG9xRYbvrO7Mv/X/T7cLRH69Q7LlaXj7kE94O77dmgOqSYKURixG/9D1XHd8uzV6hU/bXUs+m1Czej/GgPC21L6mHOywwcriUfifo9tFSWoYTvOIA6oWG2wehPcWQQk8iqqgWK0/8W+f/YIPdGttMBZ1eQ/nPJ5Fs2NxF2kJFhKR3s2z0YEf0YKdqMy+n13F4EzvdkB3EEEW+2ttP/mAwWairm7Dmi+w2LIaSWW9c4MCok+Vlu3Uh4yH/3L3CTBuVKdmT2JpGenOK/8pWO5m5rMkBiWzIwbc0T0rU8o6rVCGLUNCveDAoQSpqIgWNzdQI6+Z6ee4l5hYO5am26aZjqrxV7FHbKIUPIeLU2Q7X1JbxCypnBwImXMtvnTc2xuyVpT+bktJfcCb8S0XxxYlwvMU6wpvx7xk+AgwYf94SCLcxGaiKUJQgmIkKhtK4bnZvebbzbRi0QSgvpkrvt2aA6pJgpRGLEb/0PVcd3y7NXqFT9tdSz6bULN6P8X/PsS/kU8tE20JbkGa4JC+c7Klh22GH0Ddty/G4R19nvfjzgNvoIwWaQh5AhFjEZvCGYA3nOo5TYwtrH+O1EPTdFZxko2tj4rF65pNTbo7wvHtaFkP4FtX9rqr5nN0HnSqToI31QxL9Ib/d5RhEpod6falyz/9oyRu91ezNZKsqUggTbtAJZzOH1EzcYDhVIojmjR1QokVn0D2JsJ/C/8RiO/0oqaomsCIjvXiWd8UaEMJnZvI8lXKSA7PmcDwE1JRrDoX/M4RgjEjSnNMlywJQ9xIy5XByHNG4PZgYpf48i1rYTlHs3s29xUlcVzz3eQWEVl7p/0mt3sabyniKBa6c7Klh22GH0Ddty/G4R19njiiNoOnQqKjare4a1KAs4JbLsTN6B59Q1rIKqc4GbC3p6S5ludmvZJ2UwVZYhDjbwXYWnQZbt43svR7dQT4HjupiRXH4WvzwMb86JScKgOm7Typxa/omMdpQJ4aUFgsAjnMuORlcQRuSbsAUfQZ5pt23vS0ZpD2vtQ4TOz/o0p7yQCNaxoXjy7dMURJI7TThArbrotZZQT83514CgR52t2Y4cXvVqdmlsKR9X20v/Z3xId8K/+e2uaaYSBKu+ia1PfgzcQ8MWnIoMQbS7BW3Az2lFR0ratsL7yKrGK/PK2hH2Z0PmEdH8QhCXJoSofeD5kmMptDaHgHmaeXazVW2+VB+IQHAQqKL4JpM6PU113JTaH6BikCbwX8TrqOzsdP3KPppAn79oUKkS/vdLrXRSbnLz66Qa9pxlC83GR3H8XIxRDbNZXejt4ykyZiL1OkqDPaBNdD+LfMNOki1O4XolyZlB3b389jy711pLs9MoVeyziqcdElH+d99TuBI2bxSywzW0+QwTo5RD3CZazSUnTaByaIjxHQ7ou7Xbrz4HUFzTSsT+wCEf0iJP2y3+aPn1vOy/TcPb51T5cD6nuL/CSyqk1jlyZZH+SXIb+/zczk7PXQDcF52oxRZl2X+Ogx1EY9SJ0JDHNzPG/l4L39HJRjnYRbJf38brQAeLOqtR9u8e1oWQ/gW1f2uqvmc3QedKpOgjfVDEv0hv93lGESmh9W09VJA6ha6vLOx2Ucg7cPOBPW1YOMJnl7uxpgQ/frzx249po8xOysigzQ2jHdQGx/eiFGCfLj8E6HknWW7A1JsmcUYAoUTfJzxPylgyW2avHtaFkP4FtX9rqr5nN0HnSqToI31QxL9Ib/d5RhEpof9sokGnb3MLsr7HI2kc6bVQmqcuSkPSDCHJtMaiE3SgWmZjUfozXo+Grz8/H7UsbXvgHaLUvc94TuiMv29fPiv1Bsb7nzjTrihD2JenRJx5GY4cXvVqdmlsKR9X20v/Z3xId8K/+e2uaaYSBKu+ia1fs326l9ezBIkR9av5deasEee1jRhJq7fkaeDbBBMe0P+YNZrUPquNAUU9+fPy+1DmnBueqJlYQV6bIRkg+wqCW4bGO6v94h/eaEjM5CjDW/1fdeXBJeZCeSDs1XXhop53uI3ff3vzZGKQ/4g8C6L4I7ggULiDELktunafrSjeswtlQzNVKuOUYUjb5TaExAdafNE8uwVjov75A2/HZagT9gU/TPNxHFvKA4x93sz2Jlu75nOavhFPAfEyrUOPTa68WeM6ZuVx25Um+2rUEC2NlsbMsWphJH2cyMkEOhcECvaYSwRfvlXb6qIGU4bf1l8GfsBvwyeKbyvKsYZiujih1GmWUYG3YWmyDKu1a4aiALdw6viTxVfuhI4K7dNtn4S3uI3ff3vzZGKQ/4g8C6L4ETTijWEomdhcw+esjiPaTeMfNFhMF75h2y0bgJwZM/EUpoOL5FQ/pegWcHiRoIoYYfYzfrCgkdbXB5wArmfgSxqJmrhx0J2t/K7sQYoO4cHHjV6az0l8X2+2380JgDmbR+ksfcOvi5SkQbOSYXqbAAz1Q31lgfRGaXcH068fDIssu5nINEAXMw5T3lfvlTf+woaynlpY9VREV5CtG9XKrFdSD+wSHwLetSszIgXpk3FvExdiTDZiitsbYGEQ4I2PS2ZhuTeFHVS2eWSOwNwdiNgsxiywEKMrjU+57+heQ4cDXuz5KEMo5WL4gPNYJX48o7GQrtAyl/bTG8xYLpiOCR10CnPefuu7lfjHU85nljmEQr8ZyzbhSAsxgpuRb04ue5a1N+taJImojntCXjRuQT6nXxmXpJIxtmF/d/RqIZ4n/wp8tAMXRkbA4EPV9hPI6t8xbfWFpyLcnXirrSYn7ai825zRUCncLGEnj3MiPrfzyJJSHeFZRehqArhstYBoqF3F8O16/yn79o99BzfSsM5aKjoweznqx0YPoK4YipKxXiTEp9BQGCaoG5VzdbsoDTfBDu8OKdZYQ7toSqURy7sDN+9mgYGRzAU8yb4aMcKxxHDiCGs55VZY6GXX4nWupS+/NrHzxrjuF6XCSduHUEwtJ6h9sH3J4n7tPlyX/ioDhj/w7v0gmkdrYd/qZo1HbXmXBIA07qPqtUMMr4/WYixqh+Lz//S3E0JvDCkqF7dUCfFTmnb7krG6HBUqQo6HhP4KGwp+7aIxjAlnh924J6afZs6ENgz0SjYYGwU/XhfBS9ubRGChRQP/ZT0XXXEQ4yM4festRCcfg1E/slsgfDIekHxssnC0cqolYWhTgzJtobciRsA4iwLOI3c1mO+/zPVDfWWB9EZpdwfTrx8MizLgM9TZVSvYyni87R/Xik3sZJGmuXsz3dXFKGNGtAigexAvWUoeMy7KZT21N77biuxqh+Lz//S3E0JvDCkqF7dVBdcrZXzK6tDLLSnsTVYSjPVDfWWB9EZpdwfTrx8MixW7WQ7vJKBIAbkEmt4RKKAqWKoAi4O968aqmIXzHBi5rLimGDneWPNv3XO76xnr1nIekHxssnC0cqolYWhTgzJ/f2HJs4LHad0bAnSzwvlVNv+TiILbnYFosIdpkQG/HK8D/IlSj2vfBzprEuT+NxD5mvpwKtaaKwSfASOtU0MusDVgyNA8gbxrlWhEN/2ud+OaLwCE5tyyYWAMhwZ59Kz2/yfQ2n1llUas9F1z/ey+gO9Bnfz/ReWUpJkqzbTyalsvGAH3MTZY6piKsYrV4HgIKn9nGzcOh5Gah8jGqdZJRK/E4xHfjOiTJHiqBLcVxlYreajZf46NzExeLF8Nxx67AzfvZoGBkcwFPMm+GjHChAVOz3w/UOsqdAA2u4Eie61uOljCxOLy4YDtBiwj985tNuPOWN+ya8BoD3Wg4+WO/aVt+XJ28WlMElAP2NmH+Kb8PJPydPxP7mqQptlHXBj'data = CryptoJs.AES.decrypt(re, ne, {mode: CryptoJs.mode.ECB,padding: CryptoJs.pad.Pkcs7}).toString(CryptoJs.enc.Utf8).toString()
console.log(data)

现在有了密文和解密库,需要获取密钥

在js文件中发现了ne,就在解密方法上方

ne = CryptoJs.enc.Utf8.parse("efabccee-b754-4c")

这句代码是将里面的字符串以utf-8的模式进行编码在库中经过变换作为密钥,以下是运行结果。

 

二、精灵数据动态逆向

2.1 方法步骤

网页链接:https://www.jinglingshuju.com/articles

 通过翻页在xhr中找到数据解密的包

按照上面的搜索步骤,输入decrypt(,因为data不好找 ,找到js包进入,按ctrl+f搜索定位

注意 :在这里断点要打在return上,return JSON.parse(e.toString(y.a.enc.Utf8)),这句代码的意思是将数据转变为字符串格式,然后再转变为json格式。

同样的,data是密文,z是密钥,iv是向量,已经确定了模式和填充方式。在js文件上面有z

可以看出关键是j,z是j的 utf-8编码后在库中变为密钥,iv同样是j经过变换得来的。

2.2在pycharm中操作
    var e = y.a.AES.decrypt(data, z, {iv: y.a.enc.Utf8.parse(j.substr(0, 16)),mode: y.a.mode.ECB,padding: y.a.pad.Pkcs7});return JSON.parse(e.toString(y.a.enc.Utf8)

引入标准解密库

j = "DXZWdxUZ5jgsUFPF"
data = 'Ou1c1U7XU3pQRu0GosMzTExTbjGOdWKNv0xbBJ1Svacg71VIuC6bYOVRnhlgl62yuJFQOnsXxZ7UjQFC0Y7irZThCCMsXRNYJ0kqjdMhq6NNrHKWkGe0h5eGa0ss9n7y6ZTdZX4vbFRta+xNhSREIhtyQqu8NGWOvHvEoR7OUqWztOlizmkBFahDuYF0Ts4oXCjiXWJX6Y6qcOmTOkHqJKS4GPYoq8PMec0AtcUFBHSeufylsn17Au9O5usupD+m0oBeGnI1cH81LJ1faTkdFb/MGhRKG+z7Mc9X00rrkt/SlT7wgmeYfr/q7a0+yvnXJAuD/bP/ov/L91ugatsuFjNauk3606F3zXDiyhb6ANUitypnCgQmTJ2FakSRJTLf/NkxUP3HZ0iIpAv6Z0sFrlSu7uH9BCZAduTkINzqhx8nthEQKUEue9m5WYaWp8VuVC9uOigDkYaLa+hkfQE3DORScCI5F7cjxHoTN7EZcTjHU3CgGkauiNuYAjiVJoTjCXa5gsobYswS+38IXLxAC1AVvqaZd14acko6SMG5WTZ0zkfjcEcOEx+GOtsyZZsmcIhmlgrunruIQgAzxBFKdCmZzHDQsx1Fr7Gmy08jio94qq27XdfRb8o9tieQGAeBvMwOCV0NfEhWIlwe+lCE38l2CPfJF4jqm5XN/j85m96tRSSrT16Opxwpnzz4ZPl9wpaaN4lSy6DwFGWTGqOQhL63N3rOK3ZQuw0GIa9qkTLjLu8HErjGvNmtUtuHHy9ipQl/pGvFactJremNZ1cE87oTrq68IFfLHIq6PkXVdWZI08uQchcmim8Q582MPGOkd8sXbMeuGEloXQQh7NyjZACMztOlLuJczSzlvhRxvZzSejFl1zj+K+EdYv5rtVEdAPzXj2uzZ1zwlweAKlSsYjhonrkI9MnezROsusnmZs/BVBIqqJcSF8kHICJxgAqnMp+8WJTAxIPBcdElkiq0O9W8WlDSGGrKHA0DivlCEDLyJ86rmyr1n6q0EVcZCU/TJG4Mg/j//O4L59gy2hP20DrQo2fmTl14NxWD/Qoe2d1bW+e3EyUE1sCJ43ZMzrRQLPw+4/ULEca3b6nqyC2fZehEDlBmY25Qzdi5UyGusQYl53jROj6RDsz9CRf27WCB8ewVqv5oOeLRdcG4piNxC3323OK/z3tBqOseFdwKiQljdL1mMVMAnCu/TNXKrFDUgGKsmqMZN6fv0Ne8nlD6ijFgvEBsDk6szirTTMjvd/YwoYccp7zpb5NUv65HHCIbGZ1jeBZh72ZWCPGic6gJiPdsl++wJ7n2kT1zGljuOjW4ycnxnBjUGcORjN0W3A8wgC+P96iD3Qx6DBpgFJSAt9Lc94WgQiQh4yMCvJXak16rUIhGwqU42xmd+itfqTq1Zf9Dp6sX2TRz5EAvwRQbmxDft/QIsfQMfvrcoySVr2yaVt0aMBB7vWyVhbowfAJJ6vZey0GRTUwhHwLhtLqMEqQ3pD0Qji4g5bviH28Ltl86SNSfQpC4X1ShQCcXh4cDSi606KLsMjAKEVGCeMSx5DreRR8K2f6b5Iq+5/j0d5dkACDMcgjrIHyXIu6e0qx7jmu/HMM2WFHvsWhtxl+atb66gmiE4It1QYwuufPNGYGfQfsaPv4W7jjTFhQ1XN4rbR8xejjc1zeiDDEbBoKWHO568T7qeQq5uYGl6yLeyZj5mOUb8WY2f8jSEbGJ4dmUWeTQyEXUUiyPxd/j9VN1nVApAbiLzXjpdFkGdKLRh26Yr5QatbDTloe14ZwANIRhH3wXbp+Em869aBE51EdViu+31kPuP/5Um4PrJ57pzE2ctjgJBSkNk4jbQLvDSrcW8ag+towXD2BLajnDWVWaRyhtW1xTLUMCpz2HKKDPEVoKllE9NKzXGU2blqWwGYfAS9++bn7XsmW1W2C3cKVC5aD1BVM8pYDOvHNkOymCmRez3RhNVPzd8JlZEGbCGR0QNtUQ5lyKEpyk6JBaunB8THqqyYVQTAHSOj4T/ovq1yqCxkKyG9teawC4XGEjLEsMITKtd7F7SergLm9+K+dEU0qL30Svx+T34cw3LHwaOWRvaP/27QekwwWJGYYqGR6mHOyHs/clluTDRqO7/hoRzXgRi8I47kEWDARex//xIvB2T0BTE2ETLllS0aNHv68+aYNYZB32xP7Vx0gJqZ8b661QjPGH7bwk/Awl/xdXxhNl/0OnqxfZNHPkQC/BFBub7OwpdZcBrn5hUMmjPSkbYUGZTgfRxyXGR3mU/Zh+wLnJPUm7EE8GdhQ8W76qB5WlTHrHtKC5ZCqJZPctmB49Q4ovvTp4v9rTQWyFXgEXh/iTRviMCaLgf9gI2f5G5KQAv85JzNcAxEeP2rSlVjhQciM7aggJTuqn7kfN9w8NZnaZXXrdPIjQPXeobYc3As/9Be63qwi1g2hcE5CNop9kKzQ90gHWEPUnXnPUzdZ55kFN0isJKnk+OIC4IRadrm89CEGiYldYWNWQno48Nnhx85paejCc0LdKUUy5z8cEqRrbza3UrZ5vu5nfwaoV5d02iec5sdBUMTVJm5tWxGrrq145RNEaG+z8NOVvOFCAzoApVUowV8W63lZRP3QjelLW5wP3Bwi86pbqfbZcBRubs1K72gKGfLjP8TlhLcZF4FokGGjfGVPapJ6t8Y90Z24h+nN0uEh181GTxm6P265NFJqQBB89l+hYpxqye//AlK0LqlB6GOCSsAhhMKSByXhIgQBgVlNqK06B7b1zpgDHgbYlgHjZE7rA7On4XUekbOKdvZeWxoqEsbnlBGqFdyAXKcxBUMohXBWgmM0rln/avDrLNNozNhPXQUmCr3rjcAYVbUa+1RMvgKVtYwsw77Qy5sWWuX4Tbi+OT3D15qCpZ6tl9OUwd3Gttu0ZEHd9VlYmPQSyqbZ140Zc7Z7tFkNXlw6OKptG8gIL5BIPO1t6miL+fpfuUugu2lAY2wep01ytCiWhb1+QnjAIavmUCSK6agGmkt+PL647pTwXM0y20g1rB6AVeKPWlCvFHeoTQYPtwID6Gg0ACmUtdu4KnpoF2UBFFwBiALSSg99/OIc6hF1ZJrZDkuE1z9wreBBmEFqOeDE2gwHWHG61kYy4ZpTDz9SnDAGdRHq7pPoahxtVt71Ex3DqjUocmc/ZWB/jGeGs4RX6RGAQ+YB4kbYvVrqLs7TpYs5pARWoQ7mBdE7OKFwo4l1iV+mOqnDpkzpB6iSuledA8wuq2NfSK10425Vyh7qpYgMAo2e+7ClJyEN+o9hw4CM5yUBDlvQqYM/TPf+/zBoUShvs+zHPV9NK65Lf0pU+8IJnmH6/6u2tPsr51xThSZ1rO3seBzMHWFAxwN/LC+PYHFThBR3/dZGy47qAIrcqZwoEJkydhWpEkSUy3/zZMVD9x2dIiKQL+mdLBa5Uru7h/QQmQHbk5CDc6ocfJ7YREClBLnvZuVmGlqfFblQvbjooA5GGi2voZH0BNwzkUnAiORe3I8R6EzexGXE4uKHenZc7ozcMTNoAOmUASr1qL4wiM1C2KzL9vROM6+ohQ0dt7QYTG8ipHXcQDnCXgOnMFFKnBolLTYT+RFsnX8vrVQJFPYv9PeDOfnnqfDwIEyfYbOFdAVS/E+c6u2hboI+QOYh5jzhufudmJ8dGpSEyrXexe0nq4C5vfivnRFNKi99Er8fk9+HMNyx8GjlkhkMXuLxYUgfLrp1QPzT9ddnwnDr9euEIfCV4ARrJklLC7JJu0CQQmiJqKomNyTWJt57ojHYC0Rn/CLZ//xKhYF6qAIDw4BQrsXSi3xG6zCYXWQnLbp4qjVw/j/rvM4EuP9Ptw0fz5e14yb5yF64o/fWfZH4HcdFozuh59VKTWo64fjt7UiVKP2Z+o1xW+0759epeTwqgZE72WwZjGp9+V2qIbjus3+eptoIR/5D4Zp0Ysosy1zTEM+xKFWRWr2AytEXRPz8lYAByWJ62YH6HTgyUTPkGUUJPo/PWsnm2N0N6gQF7o+8X0/zgI7DMdaJs7gWeWI674VjbPL1DnU91+WmVrnIUHh3YDKHbrhhWH5NsNyztKYsJJQEpWpATGZxVazEeVUjlihEL0Uqd3Na72FoLVlMLoi6bbwgTdC7sJj0XSo4mocf58SgnOBvn2qNBL4JYpFGGEs1bat9ud3/9ciSLbnxAUwTRw+DSQI+j+vyASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20NokzqI4MAvfp5FaLBZ0w/WkTVnugnnTTePennyuqJ8FHPJLmmYkHcXbiSadZco5KRf9LadvHdhDMxMISywPI9MtB3W917caxAZPdO7USlkwlNY7gWeWI674VjbPL1DnU91+WmVrnIUHh3YDKHbrhhWH5OrP8ZysBLoVJdsHu2Jl2jw77kWaEn01ynuHXEn7UQUtrKmxcWc4O6ax+Qr+C0QNRFXyLH3zfpMxpV87VGMTzM1DBsCaq/n9fTR7O6vLEyjhySLbnxAUwTRw+DSQI+j+vyASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20Nok2KuCqsywgelc1QXsXBGIScDNl71s//hOCA1JdxmBa7ZeTbdueY3DR6VBHjElesQXt6W/7Gcjo02YlrlfGmp17dFjUbTsGueDhQ/HFp6EOh97gWeWI674VjbPL1DnU91+WmVrnIUHh3YDKHbrhhWH5PR/ZXIzaHV88cM6C2rJZMKu4wu5kmzbngIPv5oeLsXpESr4oUzuntCMvxCf2Gmj/54UlXFfBP/L3hbbWh/wtghLqZR+Qb3tcZBGV93dyor8ySLbnxAUwTRw+DSQI+j+vyASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20Nok6fsPidbIWUL2Rr+YgJjN6QqAd7ctTs7BmgEz7jaC6jdmn/hpvtiXQPDL4+uRDzKdVKg4KsswlyNZCnrrqp+y4jNSIAWtyHSIV7gXvUm5oYdApvYUx2qzWHP/aaZfN4FtVCqLoo8TcZNx7hFWqdGFtNvchHJ5+swD8bvu8pxDy53K0+5zRIl0R61kJ9tqp2ZoIwvM7OxVcY2i4NkPUFTvPVOkChuVGFiP0+jCiV8/ODYtDsmLtYnx2gQS2NKMu3R5KyqkKmiuYL6+K8zVJB5A/z9v1uvTSGGipuFWIUeuwMcTkSRjE9Hf+vp9qxzUmQg06yjD5XNJk9FNMjeR7+M8tdfbFx4b1fAIwWEbONn/tJb4fFP+FXugGTJpnN7YB2OvesgQ+EoA8BY9Cgi3doHK2Hrq3IYiLw73rSzHIkUu8xsTYYUFjtKnWVozp6eWP8xiguoWjUKMsdWPy062GmVuQ2h1DVjoILkPXOOwG7guHl2hEg6l7qRQLPYq0DETPddd+8+kiqa4KOfzNF6zO2quq3wqv36XToCVF0Y6QiF4Nu1OahFj4zvBwRy0gNx68bR6venH3cAtKlFVYsyT9o/Yzwuq7sr9Iv64rhagRTYKPEnDN+CKkVryCZO4l5OsnkNtNLjUUv34eYKMiZNGZsmBzIMRQBidzpgdV7ohTuX3QNpnKkHuZfQAYzvHFK+aNL3wMmpcQKg0s862b6herjDkFnYIVImxuxaXxBjr5/x2kZ0ywgqEL47psAhH09yEuNZEWcOegskD86rsuGQWpBvDlEeEUlR8etNBg7D4qheMWBleqrJhVBMAdI6PhP+i+rXKoPajz+XeQh/kAuYH8GTHJp0XpxHXFLWnuDTzSdSasgqHQ/kJoVbV0nphN9fNfOfWHOO++V8J4nM68VBkNE3mppKOu2fGXX3zcqd2bTQk5vA44qm1thtRPH8oRZy54Op2lVpne3DNGTo9stCriV5sQlbkmKbzrzcv7lagwolqtPb/78P4LFIiqH/+z7KiQ9L7z0umGpNXNGZhzthrujnyKWWZsXkVWq+YpoVCLMXJPz1twVLDbIogpzCjkjDE3NKRSki640mMZpTxzisf65n0g/jtFBzR76Sfb8caqjE1hNp8ifOq5sq9Z+qtBFXGQlP0yRuDIP4//zuC+fYMtoT9tA60KNn5k5deDcVg/0KHtndW1vntxMlBNbAieN2TM60UCz8PuP1CxHGt2+p6sgtn2XoRA5QZmNuUM3YuVMhrrEGJed40To+kQ7M/QkX9u1ggfHsFar+aDni0XXBuKYjcQt99tziv897QajrHhXcCokJZPkLcJ3lhlTCWC2pRELvIAo6+rSvkhSln3uRyuzgJc0xYLxAbA5OrM4q00zI73f2L5L63KinBwz53MsSSSObBM7zGM5cR6KrR02fNh50w5z3bJfvsCe59pE9cxpY7jo1tOk5vXZ/6y8pJiZ4gnj+YIAvj/eog90MegwaYBSUgLf0IC203yThS8XblxV24oeeq1CIRsKlONsZnforX6k6tZ19J9Yny7YKIeovAPrsmACId+aHybfJhlNIa1gDhApq4kZXv2IZYtP2clApRphHixqKKuykfeXf8jZ/A0+/FApdZKKQtFx0npZJanlxj2s8Sxzcj7r+z7TG6qV7K2tpXku6cg0S5uk0oWw0gCp0NM7HlfqMOnfV/hKCvriAdLCmH8KR1ase+T5Faulb5Rgd7DowrMdEydaupTs3GbPh9yijABhybfn40AAlipU2XEzPXQsBsw5ej9oUY6FKHFpQqkHnZkz5huz376DBynflK1C0NuYjWJDS6BDzevrPklsUYipXQveG6kU/rugJJMxKlnKye8vEfkFl2PqKtctTA3PC4mg5A6/OgKd5gP+st02OR51gkKf9Fjzu/AKReh15OAbQd6Ypqh4ChFwTq9zxcMej6jhYzJuzNfuCGO3SIkUD4C0OdHvPwE7bqFNNmpVyOC84teZb35cJUgCcRIhvQRh1w8OZUpkUFVtElljDniJlkZWEyEaySW9N3NWSK1wEL+7Bw1ZCPyIu0cXUPRF+nmpqe49dvvHxtWtw7UTEavT+EUWWbM2Pl7vaZ+I7DorzIbK+yJsDQi2IsecMSSBlFa7a2C6Cn1ed0BCRCGmY9C74hwcdBuX02ZxR5JacpueUmKTdYyj+hTg2rhY8bX1Sz019s6lm9pSKui9Fb6TpYWw+12khJtGDH+woX0Hsja3GYkz0wlXDD9bATpXhjZKybSGLqy+Z/pHPvM/Ur9Br3zPnDyujhR6m9iDOi6NgBfLbwaQkz3prxcDHGKFyuG5xjjemssA/sWPr68faRRUUApkrBXR+0Psx0pS461bKVdDbFlsmSRIH1DfO3jAx9sFXGA0Tijc1OkeQFeowkbBW1KKVd/BR2capXOtsmefhD2WI9uN15IUY5B0NeEMbsE7f2nWGLHYH9F8plNmmZHyrhlVVOT5PzGMr7Ntbk6uVvkAdVoFK7Qd1Tq8mv+9RI6Ir0bLFm8T51AuxcZUPGeq+/f4VzFcAOmWyahlBy7g2+s5EzahZ4MwyCeCrACSU0I/oPnuf110qQ7AR7wVLFk38mlghbQ2p5mZVpuB+MccS2zdwmmEi0yjU3zXD1Aifrc1BEeNrGtxvYTE3cwqPagTx+fR0LIFNsbzUpV46B4j2GEBddUi6A/5P6+07PE00cXVWkhEhynBXc2DACr+3ztn5bLUDam590/E44bekdG+niBXrat9AUOHGqFL/48HQiV7pmFOyN+tRBq/gmzCu8rWvDPuttP7d1rgmTbqI8PitaHsPqGU9u7vVGzHt+9UsY+iWR64juwBeG+rkXJ9ivmeTVIWiKL6LxkDITeClhaJYIbUG2D3AuCfv26Pc/BoGGf9rEGCEe6ux6112y2bQICyvPk9OUppTO85wQA4mexk+Y0VvfPXjfTSq3VtemXBlLff7EQD/I37PakCmrwWwP5V7MK6rmiKmNVW4S2O3NArz6bktg57w/FBbADpaNwVkQT0TMxJq3gs9zxjsZXJXrJNko3UtPvcEctcZGVLycRbrCgJuwDf0tmNz51nouIIb+EdDLOnSejFl1zj+K+EdYv5rtVEdAPzXj2uzZ1zwlweAKlSsYjhonrkI9MnezROsusnmZs+aG5lahTly6k95UBqCMlWlOAQM1guYl26ICseS0UksM+rebOPOz2mmZZOaqmSTlOnyJ86rmyr1n6q0EVcZCU/TJG4Mg/j//O4L59gy2hP20BpfKirlRwpm1BxQ9oMofB8rkRQ5vcoZAn9sC0Op/7BmQhs6LA2xdf7ck15nLXxnGIgPtaqrs6zU49GYZFUf1BZ3D8p8Ri9CgELdmUYkJm364gB6ZgZjulU89wKPHYectzrZTA8H13tc9hlwqQASWgn+zfBu/fE1pfChvyK80SVyqWdZs/SiSQHtWaHSQeDBPvp4YXy/AI2Au9y6aq1zjD5UW3GhT9itoleuyVYo86khUxPzhlr+95o+xmALZYVPZMxevT4koEhJ4fnfRw7A54ej9OSIDDbsnydIuXXsOqtxDIihSqjpB7g76gVSoibMkNtoT8cmRdDfQVJSb3tZ2RJ7lW68IiTaOuH4RUeP1TjsLDAhjHdC53m8Ne53EYNND0tAG6QEo/YbgqN/qMiuUwCUjeBpYBpZT38kpSAdawsuhQBMIdNNGxruIQW4auAw4O6mOdNUX9WRq8EEM3vulDCjc2sVYCklNSkL2Dfut8lUhxiow03huyLQpfpRbhfupEDZc/oiWq++BQWSgpWFU2SvwOoqxzOQXpgf2GgsJdnsabw0uIKWkZ3rx071UzCeOBKzvbnrqq58guPPAdxniCPtuOQa6KHAWQHRKipG8o2HNiHsH8zemo1FhrWDDdNL3fX58LVc8p0owjT3gi+qRQHIYEf50zycmbLcL7AXOSSAjZjikJVtgS3skKrehzxuIJnKvbG9WXIOet46VnJeavG95p0XZJwyH7QIJXHQTjPD9PgPoo7qKumpk5TlpFyzFWRy1jUghkf2RpdTxj0l8fqVBd6Xi7gXTMeaAXFNlUMBGJNT1Gog5rm4vKN3fdR/VLkyvdV0LVIApWVukLyNQ6sThqZdS+kaW6lGPjuwN80nqDSu2qk560cDMeKyyZ2IcIRkEq+TqUHdAHoE7wixD/ih1DVjoILkPXOOwG7guHl2hEg6l7qRQLPYq0DETPddd+8+kiqa4KOfzNF6zO2quq3wqv36XToCVF0Y6QiF4Nu1OahFj4zvBwRy0gNx68bR6ihcXXe5MXzqDbRkNZuv3tUuq7sr9Iv64rhagRTYKPEnDN+CKkVryCZO4l5OsnkNtNLjUUv34eYKMiZNGZsmBzIMRQBidzpgdV7ohTuX3QNpoTgSD9QZ744IPx53eM6Ct8mpcQKg0s862b6herjDkFmZAQAhcbnd3kPTc1AfVZG5t3a3ymXk7awVNg4abZE5REQB64ledh6DzE/3CFOc6QvQssBT+1qcGrUHGCa4AIuYeqrJhVBMAdI6PhP+i+rXKsLYD0f424cNDwpslBex8LEhMq13sXtJ6uAub34r50RTSovfRK/H5PfhzDcsfBo5ZLlSz9T0fzVniYb4xiT6PU3Z8Jw6/XrhCHwleAEayZJSMHO6AiX/F+iKTWrzbozrPh6Lc7/et9f1kidcAjqro4E2Vlt6cDHFrS43SVLogyKi5Ong6ln8oQFnkkFbiJsES519J9Yny7YKIeovAPrsmACn4aR4eClXhTNHNOVJE7Tfknhngeuvj7M6Dv36giu07D7ecQqw3ilW8A1PUti84G3kbNPs8Yjg09cPisYEWzP8YKFo95BoZqqFoa1OnAgiv+5+AWNjyDjBAPt9F8Vg6UY0PdIB1hD1J15z1M3WeeZBTdIrCSp5PjiAuCEWna5vPQhBomJXWFjVkJ6OPDZ4cfMANHzZVx/bIhwO2BW1M8Buh+L3ANAzF3GUV5cLSZzDB4oAfN2jr9rKTbfamv+WM1NeOUTRGhvs/DTlbzhQgM6AKVVKMFfFut5WUT90I3pS1rrlr+uZsPKGmNIPxR21dQfZr6FBYsq2JLGnpDNv9UuqJBho3xlT2qSerfGPdGduIST4jEkTLWNVlP44JHG+2nSakAQfPZfoWKcasnv/wJStC6pQehjgkrAIYTCkgcl4SIEAYFZTaitOge29c6YAx4G2JYB42RO6wOzp+F1HpGzieFaPQIjpzsWw/yU5eF5CX3+cjvkIELesZ2kD1gEvQc77W5wh3l62yvf/n/xXXhsh/4ULH2i5nelkXu/mF+IRALDxkPUceRRjUs9cAZL3xKLQS8fz7srziGJegc7a0nTOcV/Q/VI4tp7kLa1nBDeiCyJsyI1AITM2OEDh56/9XTUL4RNm4/n7+dX7EpxENPwjrh9ggI49GNZJktoJPMdTG2hyLytdLQNVjr64PYcyoSNbyZZoblhArX2HrK1LHuoe+1Srm12oQ5NfkCGWFdJ+LrlpiYvZ/S8JxakHKTJ6wHxteheWWItivePNnTyxli4XeQug6yH2RcN+dTpSELUnWNhESSZkWBryOLUktNIZmlrIbgnUJ0jGNEoabt4Xxr2gQTjmOVInMrIvmZaUq94ViERYewIDL8gkbwnTdUVsb1YbDTdOcBevVO+SMlx7/tiPhFtKxNpcorwwQUVVC8SufST842bocIVwP3MdMU0Hki4bPOtXipjLsRQT5VLx7BC0DnlIofwgUTa9Lqi1qmQU06I/ZQR7mV0eiLtOTQsdxsx4ORUVKtV5xdGA0J6j7e+LX0ch2/zrt1b+pIX4LYAS74epxPNUVMTpdPrMrzVGjLjEzlxk5YklvGiGZvvvmDs+OYAYzOTGSxsJsym8yp9z2jOQKKLOrCzqbcsS+2h0Zs72eibhmyhaeABNJkZPVmwvGBibb7/Z1Re04+2x0C/QHe/cdGlpKwikYf6XJp8v8xi8JcDI5XGl9KKx49FlmtlWT4ebfRGHhSjU4B2zfammjaTL8KC6kPNUqYF13ntkf2eBms4vO3hztrTD6d3AzgpYeRCgIqb11ekAqCkp8w5h7nhJDG1fn3HiKmjj9jTo7SVZlNomlx2Sxe3N96pRzl5bCbEtvBg4TJVrv3xkQOYpCGkI90BL3m5Q1lzXRu1yguuUdAC86UneAEPN228Ck+qqS3PkX4/UjC+X6QvcvrMmPfavKimzQSNvoB9fqrkrQeb7MBlABDk/ZCtZVTfaF+OHEtTxJX7igTEqjpH3wB6QdlHGwQ1Lxc/SVgo8JmR6aAMt+pjMOP8/tOkBGqFKhPHK5cb5eTOKyBVeUIszVVq7MlzQi1BGCUJDr1uuEiw6at0gafbN0f7YxaYz7qzzTxijyvNSKNZ4yLkqbJpyRGgr8Udx+6YtyW8+n4qXCgUnXNrLALBVOy20agf5SfzZ3HQnnzH5Gqh6hWHmvKrDsUn240qL30Svx+T34cw3LHwaOWTGgyEccU8WVl2VK8G5kwO12fCcOv164Qh8JXgBGsmSUlBjt+miMUn7uvLaaHlb/ZEwQi3hwD8IikI8y8R7EbLbYDQAD4z+mo5loVETDYMpQDQ3pb/8lvGSHnOdp9k4axjf8npONsl960/XF5JicKCrBl/ycdBVA+z7l+FuMJU8k7h+O3tSJUo/Zn6jXFb7TvmtaL6sPdOqFloz2u594R7zXhn08AW0b5pBW+q5SMLkpOp2ujix3V4H5RagaSNQLIxGu1GXwzHBzhMGb3+HYP42eExQq/46PpDnwTV7oXXqkEqL30Svx+T34cw3LHwaOWTGgyEccU8WVl2VK8G5kwO12fCcOv164Qh8JXgBGsmSUo3YVnRQZHvbTrh1+Ky6XMZnhTAP9KnPEfzZuiVNCrbVDD1Kc1jubuTUjarqvNrYfRTU7h4FOsQ6T3QodnYpi27NYoD1zZ77UXX9xBnxHuvxBl/ycdBVA+z7l+FuMJU8k7h+O3tSJUo/Zn6jXFb7TvmpF/djTK2nuyhmpp/ZY/qyt3Qjz/HVMbmzrz4c9Vw3ZPppmrOY/vZ48uAOdvc44JUw6b1mBqPAeJlb5DBeab9GzlaSyJ/ISJ9o7D3EhRtUr0qL30Svx+T34cw3LHwaOWTGgyEccU8WVl2VK8G5kwO12fCcOv164Qh8JXgBGsmSUvNaX8CJ4nVNlpJ0T5K/VFUG+IiIpiCCSvNVzinMGhDZm4zzF01J0T0UTyZQWxsQnsrCsQjznYe054/fD9L5lEUae3BEX0XP49l26gsAGvjqBl/ycdBVA+z7l+FuMJU8k7h+O3tSJUo/Zn6jXFb7TvlZSZHiQt6VtMii2+5hGfdLCNZSHRvXfd25LFe9YKjFRlDKSYNW5PgcX6MJS9fDeLdkZmQEc0g2CPnIw9VzJrKAXb7OCiVfXK0HyUPJYwIfWkqL30Svx+T34cw3LHwaOWTGgyEccU8WVl2VK8G5kwO12fCcOv164Qh8JXgBGsmSUnuTKf835NmtgMVN0QJ3uNDNulP0mgdDARjqDAIdH2aUtO9p89x3JET+8VpBEuK3A6Exf3QxlNMTY+4YOxUyY6F+tnOgBRJd11Ysv6/G5CtpBl/ycdBVA+z7l+FuMJU8k7h+O3tSJUo/Zn6jXFb7TvlKnIoKctxaiG1IWfvFYRo22EUMkiXg6Iw4KbkXnBzfE0uwJr8EH68D45NMbxmslOW4FyEse+qLGgfD0YyacpA0Rt9P2gmNpmaFh2PJAAaEtLHNB4lacJHtVK30lNwlPGWmEABqAwnbNX1hPHVbJoOL0LIW3c9gXVY7y2DTFWC+eldqQanUpL6yH3GMsDQpQExObz4jNKG1HkmPugRdy4lEF42Cybc2+NLgTLpey0D3YJrUYXhDk31tOGuS9R8uobgH2L9nSOOidfx9E7YI3P+jzD7XNNRe8RHDGHB6eFP9wAhuLCbLE946GCQ8aoqdKAablsS0aDRhf7vriq0geyrq3lM6F/gK7LUxJcPuXTxctoBl2wK1XMhC2XPml0WSYSXHnRIT0RCIA6ppnYF6wr0MtDbmI1iQ0ugQ83r6z5JbFGIqV0L3hupFP67oCSTMSpZKhzE8OOLKcKW5+kIUKUZAwuJoOQOvzoCneYD/rLdNjkedYJCn/RY87vwCkXodeTgLYED2KikpKvPrjAfSLW8zo+o4WMybszX7ghjt0iJFA+AtDnR7z8BO26hTTZqVcjgvOLXmW9+XCVIAnESIb0EY2UDQ1nSLXz8L2VYlX+NEm37sdtCaGxZoKoW9AXbaUIt8hQXjS/6ZAdY7bDB1QIZmDWE2HQRJIvlUJKuAg8GfgD5TPIW4PFroMpFz1cvZLz7c/Q3QfV/tqwTptB8R1nro3sB8xGoOyEkTXJaw6iHLWjx70hHJVeQ8R1vns180BUILC0IYfkavYyi/g8Plq7EIO/6Xxqj0/c4fbtElN7ImLmmVrnIUHh3YDKHbrhhWH5MR+8KHHHxDXl03lcS5MyYpT8qW7U665fVAyAhr6SqzZ4AjjjFgsl1d2HfIX4QpcKhNwIO/8SIHpcc3E/7xkGxHNmPO18Z5DREqw/LPOi2lS04Qtl0NoW8n1ah5ByZCClXSYCYJiqMff33FuKHDowewXXSJUV5ShTfkQrW3yKoEtEgxo4MT+4rCvHmg2/kkof2Cd4Bas9gIXdbztRADeSqa9YK3zJMNozPXj0/+fx9QzZsuj2SopT716kuv2rIXlsNPqC3KY2r0JXyLnr18CjFjC2UfIzgFe4OtqZjYjrS1kdIznniT+WN7x4SODcw/xbuYwFel541LZ+AcCO4rJmvXc1HmyWjwXRqRPkccQWgKktyVUz+GP2Jgvg3Ug9l4KeaPy6ncNqOZrM4zZvilPO/fZBSSp+Hws7+PgWhILNuEjqtWJfydYuABUGEb53RrlGWFKuMGrY0r3H71VbQ3MtZamOX+yY7SqVTrYQ1IZeG6mUSl3fNfgYtg+w69x33n/t5jCcS2yzz42+kPlCTK4+KE3W6GwaXRS8wt9O+nnf06BOeP/HKBR2xE3LjZu5ZtUPUrPV9DgsIDk1/laUq9EuoWskfM1U9kXw3+FuPX8Q+Bs4ReVlMuBshvtTbGODRjE8FRLM9rjjPPr6o8BUC2rXIF+zAGqMMHafI2tdMDXI8IKzxsNzGHWHXKzGp+PbKDqIRnl8CcqMGQf5NOd3FCQ0Tl0xpUh9ClVlptw3sFARz/sQ00AJUl96p9cO6cBHWv/d7kDE74ZKpP1xXV/VvQIm7R9u8KAG897h4Gf/PmeF2r2F9sXHhvV8AjBYRs42f+0lvh8U/4Ve6AZMmmc3tgHY696yBD4SgDwFj0KCLd2gcrYRD6Y7RUelOuerP8mmeSIc7HYbHLOr6SKKcS+nv35yWIWmW34TdThgZ30Mq8tsO02KHUNWOgguQ9c47AbuC4eXaESDqXupFAs9irQMRM91131SbP9Cs4NW0YMr3nGrdhsjyRyHnGMpVsEWN8XiPiZ2OuxavHQOQXXdHjwpF84dtaTr88dG4W2t4+RK1cCtV9sQZRQz4Kh7PWF5csxw+W1wCKZzjqm4Q26Wa+CP/Oy5U0XCjiXWJX6Y6qcOmTOkHqJOWyPoBW0tscmxwYTiuOx/J21/zDE3JPpz6X0GrMGaLg8wWNASfws1mOsHJ+6nyUtAAJ5ay2bHWjJB5OQEL93zAlxqoqFqyvxD0AwFAcPkpACtbe1xC7brJVF47zmGvmI57RVWXRpGJivKvM5GT+Z1OZB4KnMA3IOmvgOuPhn16kdS759J4hmbq7ncmllQ0HrtN5Ma5Z87I0VZlwIdWOm0IePtYzc5OfZSgbNbxvsAMNK4AnxQnbwijnmmk6vTwM0zitvsdNxCeXQBUs9DN+dpyASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20Nok7IiEZ+hHiFeQhFYA1J1esmovB3pZH2WeepwAIsLR3XbYxaPCTfIlrdlekxytq7eMMSkOmLiCT6mCwADoIEMdrfcfVK3PwlC1unqNF8yJVNDnNIxr5Em0Q/uLbDuuftlEGmVrnIUHh3YDKHbrhhWH5NfpU4RQsHc4e1J49TEvJTNJy8p9EDho1jqiNdnPxxANpQHbpollTe7LPcrMOof8xDDMFmLcT8q4XVuhK/l2drZrLiHcQznIzGUffWK+rqpHDitvsdNxCeXQBUs9DN+dpyASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20Nok+UuJMaYPvS/3SEa9pgCnAlG55245PR8v7+zCYKt5QFb1ZuChUmd5M3U7xP7vIUOS1tVTkzPjGUvGI4sUQlWlsd1hdTEzqvWolFiIR4wnTrikWhlG2tfJYod0KLsBPD0Tv2UU0f8e3fNNILyF7zlo4yAbVeecLGqry9nEKYXShXy39e1PTOY6BQOEaiISh67S3D7OXwTnWfsA89F2elD3Gto71DWZzw/MGgYCoCGYBHduv51k5MIPpWmkrVcBU2RfEABIpGF4lHpglzv+smvaKKYdNOdf+JXCVAynmcFkvDlnA1SlkK8Du+WsnTgp70/wc6wX5L9RHuLXOkDVzB5sCbz0t7QaUz3+mpohv71q4Wyy/8gmMr6l4vLfvQ29BliHGfo0CUgpOGnzbSBrYoajXk3sZqAZCINu8LknvQ9wlYrtMejbWMiqfkpY+hMdqsRSyD6fk6Vd1kBN8k9yAaORl5ups5ZwCqX4IrHI56lMUQMJSfcRvw+M1Pj8Ft+H1qAnUUje0Je774Se4uwJBccxxU5fkjMo0TMsOSeL6Vvnn8Gqs3p8Kuy+576CJHr4CP6Q1miU7unHvux1T0twwAJoSlQ0bhtXuQ94KmEJjp1z2gVavRj/Ae9iXyUpdmwpDLRU7mtQH7Eu3+q8QGoctbBW9m3PjBDi8C0TBNLT0LOfH7CPcC4J+/bo9z8GgYZ/2sQYI2Z1UlPEHRo4Hwi56Fs7cSWOHbr6ggzOThMTZgJQD5i9eN9NKrdW16ZcGUt9/sRAAFDnupj6a99v0HH0cDZN3TpCsT1Rqjs0Wky9V8znvOZheeZwmb6en3UXNnc+9YGxkjAIOEu2NaT8KUGxYWju8TTjmISYOb+CvhOD3q8X8HQdgJA1xVmTiC3YGQgiemwFUgiZ0FMIGiw/G/5Gln+sRbc3RDoMDAkKalZKhGcCAC647RQc0e+kn2/HGqoxNYTafInzqubKvWfqrQRVxkJT9MkbgyD+P/87gvn2DLaE/bQrNzLh7/OmFmcwt1oY7wje1tb57cTJQTWwInjdkzOtFAs/D7j9QsRxrdvqerILZ9lV6Bw92gRJ1Px0eGaAkc4+CXneNE6PpEOzP0JF/btYIHx7BWq/mg54tF1wbimI3ELffbc4r/Pe0Go6x4V3AqJCbeKaRMIfvGFKlMqtfFbWwHEUpF83qpstT5MJ3wvh3BLglEP5IGBF6UssLQhuSqZKVuzNuY9tPbOddlQZbfgNX2VHNsBW9Gm1C9AbfRcFnpUFVPtV3SK8QxQ+EmQ5vLCXHrpeDGaMZHWkkbCwzSQb5Wk3WMo/oU4Nq4WPG19Us9NSp0HesR+ECBRo51L60Lb2CisfDJ0jmvViwhe+XjiyyKtG24XYtUCQQ4NC8EFVfdUlRzbAVvRptQvQG30XBZ6VJbh5aDUs4s/f8Wpf6hSbEyihOx3eDF02JGNfAzZIHrzPn5FBB44lB9PL/VoGq+LrHKxiVVHcAmAPI0Pv9uAbrHRHnszj1PtuN3xzFQ0Ni9zqXtej1KgSfB9aV4nhZ9lQ+enn+Y4/6xzUqeAAjTpHfX0WdL2CV2QT4KfygSJferBPRgVhiWkmrC6jsu807aCwXYeHyqQoujGdUd5mZEThfiuUcKbVJzgwYSDO5r28PJDqFngzDIJ4KsAJJTQj+g+e5/XXSpDsBHvBUsWTfyaWCFtDanmZlWm4H4xxxLbN3CaYSLTKNTfNcPUCJ+tzUER42sa3G9hMTdzCo9qBPH59HQKikpZ8i4L1ydjS8lez8r1SLoD/k/r7Ts8TTRxdVaSESHKcFdzYMAKv7fO2flstQNqbn3T8Tjht6R0b6eIFetq3wZ/yzZdpxN/wkJgP6IznHcvxMEj6fNaydDUZ1x719q0/t3WuCZNuojw+K1oew+ovqWX3E9C+QMXbqtC/j6SMvI4tNqQsFlDRRWxh6qYSBWbo8EkOi8vc1XWchTcRHroXbVaSoZjbc8XSNJ3juMA4zAqUf65xi61hXQpzqanzCLhWq9NZ67WR9MgAGWI3/C/ZEa3nAgLHD6BJBHr9shTjgm9Iu9bMciJQ4SViL7v2EArM0BInawUwOXYRrNypM29x47S40riOlO6nRKoq7g8VReffNa4dQk5wgjBsrXWO2A/9a00+XdC3WVllcpbCwSvKBHG+FD0QuaVKVw32AtZEADb5algwcuX/uGGexeQfZzSlT7wgmeYfr/q7a0+yvnXJAuD/bP/ov/L91ugatsuFjNauk3606F3zXDiyhb6ANUitypnCgQmTJ2FakSRJTLfMsOtugkW0apZXkkrFy+IJVSu7uH9BCZAduTkINzqhx8nthEQKUEue9m5WYaWp8VuVC9uOigDkYaLa+hkfQE3DORScCI5F7cjxHoTN7EZcThdq/7KuQMli6QTWvsxXkhIMWXkyYoQLPddc144mhb/jlAVvqaZd14acko6SMG5WTb3BpfbBv1n566I4ciX98CA7lAxe1i0jNrj94eOkdksgh4RSVHx600GDsPiqF4xYGV6qsmFUEwB0jo+E/6L6tcq7rO3GVG4VT7xF2nIY2o16SEyrXexe0nq4C5vfivnRFNKi99Er8fk9+HMNyx8Gjlk9kyORRNXurzLfn+vVlTDwNnwnDr9euEIfCV4ARrJklLOrDU+zIf6boafw0MD0B+5vjczf37oc+jnWfpnVG1pb8m8/w5GLruisDoF6bYENDSriwIa4XHfAk80ggv89+HtlK0Wb9Co5r4FcnEBju0pJ+TnTO34iGJfRW38FVQ6iICC+6aNNKZSHK2tezNTV9ditlSp3tm5VkDuOz9pnBbRLT6AR60TOiDHJudKydi0CyVXUGrzBPxukpcpU9HGJWVMJktzVDRCQr+Ifmxl3XyFQsVLXKkE9moPs69aJDjxIVB9AVDT56RdvEx1iRm3N8Kfl8Ahl8LrIDSYLyYvuGoK5hggIz6Vv/BsUCwMppyB7mwIImdTS52g/wusP4gGYwKsx5fKqoaw/9JhvKyIhWi2Ty8WJN9mK3QjoloCpdIGihoott5eG7g6L3WZ8ijzhMiI3eOwzWtMuaA2g05swdhx2I6Gq3GP9jnsqjldkxvx9n7Tg3oVCmNdkcTTjwei4wicAkhhSCf8YWS9EkuC9dW85keTm+z2ldBca0OQnTeBrt0H6jDfPBCHPIViq9FGmrVWECQvz+3+7IVuYTAsl+zUMoVzoSDIA/b2a4zyM90I13Er4WMF5OcVjejeo/nWcNtyGLB8NdniUG6vbvQH/ySGxIRYztMX6zYfMqe3z1uiQthDVblWRJuE0AyVgr5PQNEF5tD7vyq7AfQMNKLvEPorrSkdsOqL/dTFTC0WtEa3FZM7nk4yLToiEPvUdWPNIOOo9nBSho7jW/BNpp3aE8icxYeXblxLGh0Cs25jd41vOwWZuECbpyp78LHuIf6NkPvsWcoN9S+vXKgt6pELwAlMAt+Y9B+smJP+M6Ecg86lIypOVYszJ1naMWU5OrQND+eJ586q7WtP5WAILMi3SrILmAOvID3emT711i2tvIEcyvvn+EBkp2wyOsdDjfqfGw+WLUz6Nic+R2JmG46tRbWtCteDDpoTHz4um+Zk5E6eVHbdJDNwPv8gR9NVV56veANaTMvkDybmHyTAC9lg4sNz+As6FpwLP21w6/0yyOCGfb13rA2IGHKXh2q7pveKOWsOFBk/mkh44BMvdCon0v/xWDviIOwekf5/sxlIZjzORwHYn58YwE8C5dB8+3c0Q9KRK6ogUkQRoTUfSsJBcq6zGDU1TsUOudlddcCGCSs25BJGZSwIlwAZKRqSc9jgmaCQSBgneG+JVapx1ni95a8BfAttpRfQXpl5RkaF9sffMHu3wOtXc91flgLxCTRKhM+zLPXHW/IHeWDEFsLLokNzt0W4s77Erl9fbqSMd3BrEGELTe2zNc14THYfYXFkr5eBOmgh3B1/g6GV3jrMSiGXoCYnw7By03Hm6KteWCbc8a6hewC2DXbBvUdEUkXU5r5hab9FDol7mnrIPvbd/q5m3EmtreEIa52gsQEcmiDnX7qFEOGxpWXs6VQuB/++CpzrzGf+vVxYmNURyg65+KqJ/mKhUPZRFqMSsfyTadCHW8riRnYgZBfi6DZEHRqWhTPKKY5A2BcOeXu70a/+zvpo+V1C+bP0FOJlrHt0xk7O8t9ShDaowdVKxF0hE8rvkwvRlM8sLS/CUbNd3iFslh/RJ+yvSTaa5rJwbSMGJ1bApBh6UR9bEDA2ngcfPAdrkhU/8cajDkWLBZwObFmQHIn805E+yrYtzJeEahu6i8Vwwo5NIp2rGn9ULkt7PxM9UVgCDJaIARmmDr8vHo04t6cfz+9F3L2Kffqzn/286jYZNcLjGuK161lag+X6Vi5FtgYkCECROqcNq/4dMCIO1YeOwAtotlHZIKMRTT6eLkY/YfbbUq3wWnZxhdhKhKuCiqi51etucRhBLF135doZyvZiqi1AEsFX/OjxlSr24vgtenb4fnb1Zu27Kkx08pVPKa3vHOEZ9RXNYDFyNU3NcqafEcDfsP+zD4Oi4LPHnCrZHKOm6DkhV5vMnHdHmT48Iko80/XNQop+chwcuRWmGeJSYPbnEbSjYoj02tIKnAAiWOUrEJAnqQiQ4k2ATSVtP73GO5qmVMNQ5S9hFuxRQXEN6ZRQ2WKFlO6EGwnDZi/0L2pZ24aKt93oFl+LLpF25sPule6lCCs5ApqutDixyF7P4VW2YeEoUM7avFfX2Eu0biuww6rjl4X9rvmX5akjC1dpzttjQhmjgUWOxft/J7cD7QFqh/wvwrZGBl4mTxi5b/v3IulXdN7gW65aVARGya1pqJd+l+l+9GMLeCWIixt9Os71O4QW4CXouCqs3TJGImOv/AKUt2DA3XXkpOCRSI+wlTJBLdb8QrQxZ1T9ssbNAgOdl4DI2G1iU35lkp8FIAmk3WMo/oU4Nq4WPG19Us9NSp0HesR+ECBRo51L60Lb2IgczFFIMXe9Duph4wVhPb2tG24XYtUCQQ4NC8EFVfdU7k3gjLuSheXiU19uX8+AF2zMUCfqIx2wI1yWZjiNyvM8u7bWvs6OW6AoIjQRDnA5SDqGECcvIbsLumdDQO8O6D+pDsUrzQnfyNBHY2vg6jvduhoaqh60B+C4XjPbDfLoS3PkX4/UjC+X6QvcvrMmPeflMsgkok4ajz8gpWsvah9L/cLeDJbISsrfD1HlRHr8ZWHjv6WftlfiKo7ug3qdUgu2fIgSg1y7nP9Wd9xWgEtl9/4tBnNsdWVesCH7ig80qwx7AWvLNSwl72dPRfpq4wPJeNZP/fiGImQNAzNb/7bBfpCm8Eqi0KzgYu31tgXFwCKCdg38xTLFTPmTvB3pVWAxmGf+KalBDavTSYGPwwugt5r+z4O+oiw3fbv97zJASVE2pft9q1o3x9ol8fB+PBOgHPPY/N38nbDdbVHVnGr4ctabnStPK4PjgGll0Mkh'const CryptoJs = require('crypto-js')
z = CryptoJs.enc.Utf8.parse(j)
data1 = CryptoJs.AES.decrypt(data, z, {iv: CryptoJs.enc.Utf8.parse(j.substr(0, 16)),mode: CryptoJs.mode.ECB,padding: CryptoJs.pad.Pkcs7});
console.log(JSON.parse(data1.toString(CryptoJs.enc.Utf8)))

结果展现:

 

三、python调用js文件,以精灵数据为例

js部分代码:

const CryptoJs = require('crypto-js');
function f(data){j = "DXZWdxUZ5jgsUFPF";z = CryptoJs.enc.Utf8.parse(j)data1 = CryptoJs.AES.decrypt(data, z,{iv: CryptoJs.enc.Utf8.parse(j.substr(0, 16)), mode: CryptoJs.mode.ECB,padding: CryptoJs.pad.Pkcs7});return data1.toString(CryptoJs.enc.Utf8);}function s(data1){return JSON.parse(data1);
}

python部分代码;

import execjsa = open('练习.js','r',encoding='utf-8').read()data = 'Ou1c1U7XU3pQRu0GosMzTExTbjGOdWKNv0xbBJ1Svacg71VIuC6bYOVRnhlgl62yuJFQOnsXxZ7UjQFC0Y7irZThCCMsXRNYJ0kqjdMhq6NNrHKWkGe0h5eGa0ss9n7y6ZTdZX4vbFRta+xNhSREIhtyQqu8NGWOvHvEoR7OUqWztOlizmkBFahDuYF0Ts4oXCjiXWJX6Y6qcOmTOkHqJKS4GPYoq8PMec0AtcUFBHSeufylsn17Au9O5usupD+m0oBeGnI1cH81LJ1faTkdFb/MGhRKG+z7Mc9X00rrkt/SlT7wgmeYfr/q7a0+yvnXJAuD/bP/ov/L91ugatsuFjNauk3606F3zXDiyhb6ANUitypnCgQmTJ2FakSRJTLf/NkxUP3HZ0iIpAv6Z0sFrlSu7uH9BCZAduTkINzqhx8nthEQKUEue9m5WYaWp8VuVC9uOigDkYaLa+hkfQE3DORScCI5F7cjxHoTN7EZcTjHU3CgGkauiNuYAjiVJoTjCXa5gsobYswS+38IXLxAC1AVvqaZd14acko6SMG5WTZ0zkfjcEcOEx+GOtsyZZsmcIhmlgrunruIQgAzxBFKdCmZzHDQsx1Fr7Gmy08jio94qq27XdfRb8o9tieQGAeBvMwOCV0NfEhWIlwe+lCE38l2CPfJF4jqm5XN/j85m96tRSSrT16Opxwpnzz4ZPl9wpaaN4lSy6DwFGWTGqOQhL63N3rOK3ZQuw0GIa9qkTLjLu8HErjGvNmtUtuHHy9ipQl/pGvFactJremNZ1cE87oTrq68IFfLHIq6PkXVdWZI08uQchcmim8Q582MPGOkd8sXbMeuGEloXQQh7NyjZACMztOlLuJczSzlvhRxvZzSejFl1zj+K+EdYv5rtVEdAPzXj2uzZ1zwlweAKlSsYjhonrkI9MnezROsusnmZs/BVBIqqJcSF8kHICJxgAqnMp+8WJTAxIPBcdElkiq0O9W8WlDSGGrKHA0DivlCEDLyJ86rmyr1n6q0EVcZCU/TJG4Mg/j//O4L59gy2hP20DrQo2fmTl14NxWD/Qoe2d1bW+e3EyUE1sCJ43ZMzrRQLPw+4/ULEca3b6nqyC2fZehEDlBmY25Qzdi5UyGusQYl53jROj6RDsz9CRf27WCB8ewVqv5oOeLRdcG4piNxC3323OK/z3tBqOseFdwKiQljdL1mMVMAnCu/TNXKrFDUgGKsmqMZN6fv0Ne8nlD6ijFgvEBsDk6szirTTMjvd/YwoYccp7zpb5NUv65HHCIbGZ1jeBZh72ZWCPGic6gJiPdsl++wJ7n2kT1zGljuOjW4ycnxnBjUGcORjN0W3A8wgC+P96iD3Qx6DBpgFJSAt9Lc94WgQiQh4yMCvJXak16rUIhGwqU42xmd+itfqTq1Zf9Dp6sX2TRz5EAvwRQbmxDft/QIsfQMfvrcoySVr2yaVt0aMBB7vWyVhbowfAJJ6vZey0GRTUwhHwLhtLqMEqQ3pD0Qji4g5bviH28Ltl86SNSfQpC4X1ShQCcXh4cDSi606KLsMjAKEVGCeMSx5DreRR8K2f6b5Iq+5/j0d5dkACDMcgjrIHyXIu6e0qx7jmu/HMM2WFHvsWhtxl+atb66gmiE4It1QYwuufPNGYGfQfsaPv4W7jjTFhQ1XN4rbR8xejjc1zeiDDEbBoKWHO568T7qeQq5uYGl6yLeyZj5mOUb8WY2f8jSEbGJ4dmUWeTQyEXUUiyPxd/j9VN1nVApAbiLzXjpdFkGdKLRh26Yr5QatbDTloe14ZwANIRhH3wXbp+Em869aBE51EdViu+31kPuP/5Um4PrJ57pzE2ctjgJBSkNk4jbQLvDSrcW8ag+towXD2BLajnDWVWaRyhtW1xTLUMCpz2HKKDPEVoKllE9NKzXGU2blqWwGYfAS9++bn7XsmW1W2C3cKVC5aD1BVM8pYDOvHNkOymCmRez3RhNVPzd8JlZEGbCGR0QNtUQ5lyKEpyk6JBaunB8THqqyYVQTAHSOj4T/ovq1yqCxkKyG9teawC4XGEjLEsMITKtd7F7SergLm9+K+dEU0qL30Svx+T34cw3LHwaOWRvaP/27QekwwWJGYYqGR6mHOyHs/clluTDRqO7/hoRzXgRi8I47kEWDARex//xIvB2T0BTE2ETLllS0aNHv68+aYNYZB32xP7Vx0gJqZ8b661QjPGH7bwk/Awl/xdXxhNl/0OnqxfZNHPkQC/BFBub7OwpdZcBrn5hUMmjPSkbYUGZTgfRxyXGR3mU/Zh+wLnJPUm7EE8GdhQ8W76qB5WlTHrHtKC5ZCqJZPctmB49Q4ovvTp4v9rTQWyFXgEXh/iTRviMCaLgf9gI2f5G5KQAv85JzNcAxEeP2rSlVjhQciM7aggJTuqn7kfN9w8NZnaZXXrdPIjQPXeobYc3As/9Be63qwi1g2hcE5CNop9kKzQ90gHWEPUnXnPUzdZ55kFN0isJKnk+OIC4IRadrm89CEGiYldYWNWQno48Nnhx85paejCc0LdKUUy5z8cEqRrbza3UrZ5vu5nfwaoV5d02iec5sdBUMTVJm5tWxGrrq145RNEaG+z8NOVvOFCAzoApVUowV8W63lZRP3QjelLW5wP3Bwi86pbqfbZcBRubs1K72gKGfLjP8TlhLcZF4FokGGjfGVPapJ6t8Y90Z24h+nN0uEh181GTxm6P265NFJqQBB89l+hYpxqye//AlK0LqlB6GOCSsAhhMKSByXhIgQBgVlNqK06B7b1zpgDHgbYlgHjZE7rA7On4XUekbOKdvZeWxoqEsbnlBGqFdyAXKcxBUMohXBWgmM0rln/avDrLNNozNhPXQUmCr3rjcAYVbUa+1RMvgKVtYwsw77Qy5sWWuX4Tbi+OT3D15qCpZ6tl9OUwd3Gttu0ZEHd9VlYmPQSyqbZ140Zc7Z7tFkNXlw6OKptG8gIL5BIPO1t6miL+fpfuUugu2lAY2wep01ytCiWhb1+QnjAIavmUCSK6agGmkt+PL647pTwXM0y20g1rB6AVeKPWlCvFHeoTQYPtwID6Gg0ACmUtdu4KnpoF2UBFFwBiALSSg99/OIc6hF1ZJrZDkuE1z9wreBBmEFqOeDE2gwHWHG61kYy4ZpTDz9SnDAGdRHq7pPoahxtVt71Ex3DqjUocmc/ZWB/jGeGs4RX6RGAQ+YB4kbYvVrqLs7TpYs5pARWoQ7mBdE7OKFwo4l1iV+mOqnDpkzpB6iSuledA8wuq2NfSK10425Vyh7qpYgMAo2e+7ClJyEN+o9hw4CM5yUBDlvQqYM/TPf+/zBoUShvs+zHPV9NK65Lf0pU+8IJnmH6/6u2tPsr51xThSZ1rO3seBzMHWFAxwN/LC+PYHFThBR3/dZGy47qAIrcqZwoEJkydhWpEkSUy3/zZMVD9x2dIiKQL+mdLBa5Uru7h/QQmQHbk5CDc6ocfJ7YREClBLnvZuVmGlqfFblQvbjooA5GGi2voZH0BNwzkUnAiORe3I8R6EzexGXE4uKHenZc7ozcMTNoAOmUASr1qL4wiM1C2KzL9vROM6+ohQ0dt7QYTG8ipHXcQDnCXgOnMFFKnBolLTYT+RFsnX8vrVQJFPYv9PeDOfnnqfDwIEyfYbOFdAVS/E+c6u2hboI+QOYh5jzhufudmJ8dGpSEyrXexe0nq4C5vfivnRFNKi99Er8fk9+HMNyx8GjlkhkMXuLxYUgfLrp1QPzT9ddnwnDr9euEIfCV4ARrJklLC7JJu0CQQmiJqKomNyTWJt57ojHYC0Rn/CLZ//xKhYF6qAIDw4BQrsXSi3xG6zCYXWQnLbp4qjVw/j/rvM4EuP9Ptw0fz5e14yb5yF64o/fWfZH4HcdFozuh59VKTWo64fjt7UiVKP2Z+o1xW+0759epeTwqgZE72WwZjGp9+V2qIbjus3+eptoIR/5D4Zp0Ysosy1zTEM+xKFWRWr2AytEXRPz8lYAByWJ62YH6HTgyUTPkGUUJPo/PWsnm2N0N6gQF7o+8X0/zgI7DMdaJs7gWeWI674VjbPL1DnU91+WmVrnIUHh3YDKHbrhhWH5NsNyztKYsJJQEpWpATGZxVazEeVUjlihEL0Uqd3Na72FoLVlMLoi6bbwgTdC7sJj0XSo4mocf58SgnOBvn2qNBL4JYpFGGEs1bat9ud3/9ciSLbnxAUwTRw+DSQI+j+vyASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20NokzqI4MAvfp5FaLBZ0w/WkTVnugnnTTePennyuqJ8FHPJLmmYkHcXbiSadZco5KRf9LadvHdhDMxMISywPI9MtB3W917caxAZPdO7USlkwlNY7gWeWI674VjbPL1DnU91+WmVrnIUHh3YDKHbrhhWH5OrP8ZysBLoVJdsHu2Jl2jw77kWaEn01ynuHXEn7UQUtrKmxcWc4O6ax+Qr+C0QNRFXyLH3zfpMxpV87VGMTzM1DBsCaq/n9fTR7O6vLEyjhySLbnxAUwTRw+DSQI+j+vyASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20Nok2KuCqsywgelc1QXsXBGIScDNl71s//hOCA1JdxmBa7ZeTbdueY3DR6VBHjElesQXt6W/7Gcjo02YlrlfGmp17dFjUbTsGueDhQ/HFp6EOh97gWeWI674VjbPL1DnU91+WmVrnIUHh3YDKHbrhhWH5PR/ZXIzaHV88cM6C2rJZMKu4wu5kmzbngIPv5oeLsXpESr4oUzuntCMvxCf2Gmj/54UlXFfBP/L3hbbWh/wtghLqZR+Qb3tcZBGV93dyor8ySLbnxAUwTRw+DSQI+j+vyASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20Nok6fsPidbIWUL2Rr+YgJjN6QqAd7ctTs7BmgEz7jaC6jdmn/hpvtiXQPDL4+uRDzKdVKg4KsswlyNZCnrrqp+y4jNSIAWtyHSIV7gXvUm5oYdApvYUx2qzWHP/aaZfN4FtVCqLoo8TcZNx7hFWqdGFtNvchHJ5+swD8bvu8pxDy53K0+5zRIl0R61kJ9tqp2ZoIwvM7OxVcY2i4NkPUFTvPVOkChuVGFiP0+jCiV8/ODYtDsmLtYnx2gQS2NKMu3R5KyqkKmiuYL6+K8zVJB5A/z9v1uvTSGGipuFWIUeuwMcTkSRjE9Hf+vp9qxzUmQg06yjD5XNJk9FNMjeR7+M8tdfbFx4b1fAIwWEbONn/tJb4fFP+FXugGTJpnN7YB2OvesgQ+EoA8BY9Cgi3doHK2Hrq3IYiLw73rSzHIkUu8xsTYYUFjtKnWVozp6eWP8xiguoWjUKMsdWPy062GmVuQ2h1DVjoILkPXOOwG7guHl2hEg6l7qRQLPYq0DETPddd+8+kiqa4KOfzNF6zO2quq3wqv36XToCVF0Y6QiF4Nu1OahFj4zvBwRy0gNx68bR6venH3cAtKlFVYsyT9o/Yzwuq7sr9Iv64rhagRTYKPEnDN+CKkVryCZO4l5OsnkNtNLjUUv34eYKMiZNGZsmBzIMRQBidzpgdV7ohTuX3QNpnKkHuZfQAYzvHFK+aNL3wMmpcQKg0s862b6herjDkFnYIVImxuxaXxBjr5/x2kZ0ywgqEL47psAhH09yEuNZEWcOegskD86rsuGQWpBvDlEeEUlR8etNBg7D4qheMWBleqrJhVBMAdI6PhP+i+rXKoPajz+XeQh/kAuYH8GTHJp0XpxHXFLWnuDTzSdSasgqHQ/kJoVbV0nphN9fNfOfWHOO++V8J4nM68VBkNE3mppKOu2fGXX3zcqd2bTQk5vA44qm1thtRPH8oRZy54Op2lVpne3DNGTo9stCriV5sQlbkmKbzrzcv7lagwolqtPb/78P4LFIiqH/+z7KiQ9L7z0umGpNXNGZhzthrujnyKWWZsXkVWq+YpoVCLMXJPz1twVLDbIogpzCjkjDE3NKRSki640mMZpTxzisf65n0g/jtFBzR76Sfb8caqjE1hNp8ifOq5sq9Z+qtBFXGQlP0yRuDIP4//zuC+fYMtoT9tA60KNn5k5deDcVg/0KHtndW1vntxMlBNbAieN2TM60UCz8PuP1CxHGt2+p6sgtn2XoRA5QZmNuUM3YuVMhrrEGJed40To+kQ7M/QkX9u1ggfHsFar+aDni0XXBuKYjcQt99tziv897QajrHhXcCokJZPkLcJ3lhlTCWC2pRELvIAo6+rSvkhSln3uRyuzgJc0xYLxAbA5OrM4q00zI73f2L5L63KinBwz53MsSSSObBM7zGM5cR6KrR02fNh50w5z3bJfvsCe59pE9cxpY7jo1tOk5vXZ/6y8pJiZ4gnj+YIAvj/eog90MegwaYBSUgLf0IC203yThS8XblxV24oeeq1CIRsKlONsZnforX6k6tZ19J9Yny7YKIeovAPrsmACId+aHybfJhlNIa1gDhApq4kZXv2IZYtP2clApRphHixqKKuykfeXf8jZ/A0+/FApdZKKQtFx0npZJanlxj2s8Sxzcj7r+z7TG6qV7K2tpXku6cg0S5uk0oWw0gCp0NM7HlfqMOnfV/hKCvriAdLCmH8KR1ase+T5Faulb5Rgd7DowrMdEydaupTs3GbPh9yijABhybfn40AAlipU2XEzPXQsBsw5ej9oUY6FKHFpQqkHnZkz5huz376DBynflK1C0NuYjWJDS6BDzevrPklsUYipXQveG6kU/rugJJMxKlnKye8vEfkFl2PqKtctTA3PC4mg5A6/OgKd5gP+st02OR51gkKf9Fjzu/AKReh15OAbQd6Ypqh4ChFwTq9zxcMej6jhYzJuzNfuCGO3SIkUD4C0OdHvPwE7bqFNNmpVyOC84teZb35cJUgCcRIhvQRh1w8OZUpkUFVtElljDniJlkZWEyEaySW9N3NWSK1wEL+7Bw1ZCPyIu0cXUPRF+nmpqe49dvvHxtWtw7UTEavT+EUWWbM2Pl7vaZ+I7DorzIbK+yJsDQi2IsecMSSBlFa7a2C6Cn1ed0BCRCGmY9C74hwcdBuX02ZxR5JacpueUmKTdYyj+hTg2rhY8bX1Sz019s6lm9pSKui9Fb6TpYWw+12khJtGDH+woX0Hsja3GYkz0wlXDD9bATpXhjZKybSGLqy+Z/pHPvM/Ur9Br3zPnDyujhR6m9iDOi6NgBfLbwaQkz3prxcDHGKFyuG5xjjemssA/sWPr68faRRUUApkrBXR+0Psx0pS461bKVdDbFlsmSRIH1DfO3jAx9sFXGA0Tijc1OkeQFeowkbBW1KKVd/BR2capXOtsmefhD2WI9uN15IUY5B0NeEMbsE7f2nWGLHYH9F8plNmmZHyrhlVVOT5PzGMr7Ntbk6uVvkAdVoFK7Qd1Tq8mv+9RI6Ir0bLFm8T51AuxcZUPGeq+/f4VzFcAOmWyahlBy7g2+s5EzahZ4MwyCeCrACSU0I/oPnuf110qQ7AR7wVLFk38mlghbQ2p5mZVpuB+MccS2zdwmmEi0yjU3zXD1Aifrc1BEeNrGtxvYTE3cwqPagTx+fR0LIFNsbzUpV46B4j2GEBddUi6A/5P6+07PE00cXVWkhEhynBXc2DACr+3ztn5bLUDam590/E44bekdG+niBXrat9AUOHGqFL/48HQiV7pmFOyN+tRBq/gmzCu8rWvDPuttP7d1rgmTbqI8PitaHsPqGU9u7vVGzHt+9UsY+iWR64juwBeG+rkXJ9ivmeTVIWiKL6LxkDITeClhaJYIbUG2D3AuCfv26Pc/BoGGf9rEGCEe6ux6112y2bQICyvPk9OUppTO85wQA4mexk+Y0VvfPXjfTSq3VtemXBlLff7EQD/I37PakCmrwWwP5V7MK6rmiKmNVW4S2O3NArz6bktg57w/FBbADpaNwVkQT0TMxJq3gs9zxjsZXJXrJNko3UtPvcEctcZGVLycRbrCgJuwDf0tmNz51nouIIb+EdDLOnSejFl1zj+K+EdYv5rtVEdAPzXj2uzZ1zwlweAKlSsYjhonrkI9MnezROsusnmZs+aG5lahTly6k95UBqCMlWlOAQM1guYl26ICseS0UksM+rebOPOz2mmZZOaqmSTlOnyJ86rmyr1n6q0EVcZCU/TJG4Mg/j//O4L59gy2hP20BpfKirlRwpm1BxQ9oMofB8rkRQ5vcoZAn9sC0Op/7BmQhs6LA2xdf7ck15nLXxnGIgPtaqrs6zU49GYZFUf1BZ3D8p8Ri9CgELdmUYkJm364gB6ZgZjulU89wKPHYectzrZTA8H13tc9hlwqQASWgn+zfBu/fE1pfChvyK80SVyqWdZs/SiSQHtWaHSQeDBPvp4YXy/AI2Au9y6aq1zjD5UW3GhT9itoleuyVYo86khUxPzhlr+95o+xmALZYVPZMxevT4koEhJ4fnfRw7A54ej9OSIDDbsnydIuXXsOqtxDIihSqjpB7g76gVSoibMkNtoT8cmRdDfQVJSb3tZ2RJ7lW68IiTaOuH4RUeP1TjsLDAhjHdC53m8Ne53EYNND0tAG6QEo/YbgqN/qMiuUwCUjeBpYBpZT38kpSAdawsuhQBMIdNNGxruIQW4auAw4O6mOdNUX9WRq8EEM3vulDCjc2sVYCklNSkL2Dfut8lUhxiow03huyLQpfpRbhfupEDZc/oiWq++BQWSgpWFU2SvwOoqxzOQXpgf2GgsJdnsabw0uIKWkZ3rx071UzCeOBKzvbnrqq58guPPAdxniCPtuOQa6KHAWQHRKipG8o2HNiHsH8zemo1FhrWDDdNL3fX58LVc8p0owjT3gi+qRQHIYEf50zycmbLcL7AXOSSAjZjikJVtgS3skKrehzxuIJnKvbG9WXIOet46VnJeavG95p0XZJwyH7QIJXHQTjPD9PgPoo7qKumpk5TlpFyzFWRy1jUghkf2RpdTxj0l8fqVBd6Xi7gXTMeaAXFNlUMBGJNT1Gog5rm4vKN3fdR/VLkyvdV0LVIApWVukLyNQ6sThqZdS+kaW6lGPjuwN80nqDSu2qk560cDMeKyyZ2IcIRkEq+TqUHdAHoE7wixD/ih1DVjoILkPXOOwG7guHl2hEg6l7qRQLPYq0DETPddd+8+kiqa4KOfzNF6zO2quq3wqv36XToCVF0Y6QiF4Nu1OahFj4zvBwRy0gNx68bR6ihcXXe5MXzqDbRkNZuv3tUuq7sr9Iv64rhagRTYKPEnDN+CKkVryCZO4l5OsnkNtNLjUUv34eYKMiZNGZsmBzIMRQBidzpgdV7ohTuX3QNpoTgSD9QZ744IPx53eM6Ct8mpcQKg0s862b6herjDkFmZAQAhcbnd3kPTc1AfVZG5t3a3ymXk7awVNg4abZE5REQB64ledh6DzE/3CFOc6QvQssBT+1qcGrUHGCa4AIuYeqrJhVBMAdI6PhP+i+rXKsLYD0f424cNDwpslBex8LEhMq13sXtJ6uAub34r50RTSovfRK/H5PfhzDcsfBo5ZLlSz9T0fzVniYb4xiT6PU3Z8Jw6/XrhCHwleAEayZJSMHO6AiX/F+iKTWrzbozrPh6Lc7/et9f1kidcAjqro4E2Vlt6cDHFrS43SVLogyKi5Ong6ln8oQFnkkFbiJsES519J9Yny7YKIeovAPrsmACn4aR4eClXhTNHNOVJE7Tfknhngeuvj7M6Dv36giu07D7ecQqw3ilW8A1PUti84G3kbNPs8Yjg09cPisYEWzP8YKFo95BoZqqFoa1OnAgiv+5+AWNjyDjBAPt9F8Vg6UY0PdIB1hD1J15z1M3WeeZBTdIrCSp5PjiAuCEWna5vPQhBomJXWFjVkJ6OPDZ4cfMANHzZVx/bIhwO2BW1M8Buh+L3ANAzF3GUV5cLSZzDB4oAfN2jr9rKTbfamv+WM1NeOUTRGhvs/DTlbzhQgM6AKVVKMFfFut5WUT90I3pS1rrlr+uZsPKGmNIPxR21dQfZr6FBYsq2JLGnpDNv9UuqJBho3xlT2qSerfGPdGduIST4jEkTLWNVlP44JHG+2nSakAQfPZfoWKcasnv/wJStC6pQehjgkrAIYTCkgcl4SIEAYFZTaitOge29c6YAx4G2JYB42RO6wOzp+F1HpGzieFaPQIjpzsWw/yU5eF5CX3+cjvkIELesZ2kD1gEvQc77W5wh3l62yvf/n/xXXhsh/4ULH2i5nelkXu/mF+IRALDxkPUceRRjUs9cAZL3xKLQS8fz7srziGJegc7a0nTOcV/Q/VI4tp7kLa1nBDeiCyJsyI1AITM2OEDh56/9XTUL4RNm4/n7+dX7EpxENPwjrh9ggI49GNZJktoJPMdTG2hyLytdLQNVjr64PYcyoSNbyZZoblhArX2HrK1LHuoe+1Srm12oQ5NfkCGWFdJ+LrlpiYvZ/S8JxakHKTJ6wHxteheWWItivePNnTyxli4XeQug6yH2RcN+dTpSELUnWNhESSZkWBryOLUktNIZmlrIbgnUJ0jGNEoabt4Xxr2gQTjmOVInMrIvmZaUq94ViERYewIDL8gkbwnTdUVsb1YbDTdOcBevVO+SMlx7/tiPhFtKxNpcorwwQUVVC8SufST842bocIVwP3MdMU0Hki4bPOtXipjLsRQT5VLx7BC0DnlIofwgUTa9Lqi1qmQU06I/ZQR7mV0eiLtOTQsdxsx4ORUVKtV5xdGA0J6j7e+LX0ch2/zrt1b+pIX4LYAS74epxPNUVMTpdPrMrzVGjLjEzlxk5YklvGiGZvvvmDs+OYAYzOTGSxsJsym8yp9z2jOQKKLOrCzqbcsS+2h0Zs72eibhmyhaeABNJkZPVmwvGBibb7/Z1Re04+2x0C/QHe/cdGlpKwikYf6XJp8v8xi8JcDI5XGl9KKx49FlmtlWT4ebfRGHhSjU4B2zfammjaTL8KC6kPNUqYF13ntkf2eBms4vO3hztrTD6d3AzgpYeRCgIqb11ekAqCkp8w5h7nhJDG1fn3HiKmjj9jTo7SVZlNomlx2Sxe3N96pRzl5bCbEtvBg4TJVrv3xkQOYpCGkI90BL3m5Q1lzXRu1yguuUdAC86UneAEPN228Ck+qqS3PkX4/UjC+X6QvcvrMmPfavKimzQSNvoB9fqrkrQeb7MBlABDk/ZCtZVTfaF+OHEtTxJX7igTEqjpH3wB6QdlHGwQ1Lxc/SVgo8JmR6aAMt+pjMOP8/tOkBGqFKhPHK5cb5eTOKyBVeUIszVVq7MlzQi1BGCUJDr1uuEiw6at0gafbN0f7YxaYz7qzzTxijyvNSKNZ4yLkqbJpyRGgr8Udx+6YtyW8+n4qXCgUnXNrLALBVOy20agf5SfzZ3HQnnzH5Gqh6hWHmvKrDsUn240qL30Svx+T34cw3LHwaOWTGgyEccU8WVl2VK8G5kwO12fCcOv164Qh8JXgBGsmSUlBjt+miMUn7uvLaaHlb/ZEwQi3hwD8IikI8y8R7EbLbYDQAD4z+mo5loVETDYMpQDQ3pb/8lvGSHnOdp9k4axjf8npONsl960/XF5JicKCrBl/ycdBVA+z7l+FuMJU8k7h+O3tSJUo/Zn6jXFb7TvmtaL6sPdOqFloz2u594R7zXhn08AW0b5pBW+q5SMLkpOp2ujix3V4H5RagaSNQLIxGu1GXwzHBzhMGb3+HYP42eExQq/46PpDnwTV7oXXqkEqL30Svx+T34cw3LHwaOWTGgyEccU8WVl2VK8G5kwO12fCcOv164Qh8JXgBGsmSUo3YVnRQZHvbTrh1+Ky6XMZnhTAP9KnPEfzZuiVNCrbVDD1Kc1jubuTUjarqvNrYfRTU7h4FOsQ6T3QodnYpi27NYoD1zZ77UXX9xBnxHuvxBl/ycdBVA+z7l+FuMJU8k7h+O3tSJUo/Zn6jXFb7TvmpF/djTK2nuyhmpp/ZY/qyt3Qjz/HVMbmzrz4c9Vw3ZPppmrOY/vZ48uAOdvc44JUw6b1mBqPAeJlb5DBeab9GzlaSyJ/ISJ9o7D3EhRtUr0qL30Svx+T34cw3LHwaOWTGgyEccU8WVl2VK8G5kwO12fCcOv164Qh8JXgBGsmSUvNaX8CJ4nVNlpJ0T5K/VFUG+IiIpiCCSvNVzinMGhDZm4zzF01J0T0UTyZQWxsQnsrCsQjznYe054/fD9L5lEUae3BEX0XP49l26gsAGvjqBl/ycdBVA+z7l+FuMJU8k7h+O3tSJUo/Zn6jXFb7TvlZSZHiQt6VtMii2+5hGfdLCNZSHRvXfd25LFe9YKjFRlDKSYNW5PgcX6MJS9fDeLdkZmQEc0g2CPnIw9VzJrKAXb7OCiVfXK0HyUPJYwIfWkqL30Svx+T34cw3LHwaOWTGgyEccU8WVl2VK8G5kwO12fCcOv164Qh8JXgBGsmSUnuTKf835NmtgMVN0QJ3uNDNulP0mgdDARjqDAIdH2aUtO9p89x3JET+8VpBEuK3A6Exf3QxlNMTY+4YOxUyY6F+tnOgBRJd11Ysv6/G5CtpBl/ycdBVA+z7l+FuMJU8k7h+O3tSJUo/Zn6jXFb7TvlKnIoKctxaiG1IWfvFYRo22EUMkiXg6Iw4KbkXnBzfE0uwJr8EH68D45NMbxmslOW4FyEse+qLGgfD0YyacpA0Rt9P2gmNpmaFh2PJAAaEtLHNB4lacJHtVK30lNwlPGWmEABqAwnbNX1hPHVbJoOL0LIW3c9gXVY7y2DTFWC+eldqQanUpL6yH3GMsDQpQExObz4jNKG1HkmPugRdy4lEF42Cybc2+NLgTLpey0D3YJrUYXhDk31tOGuS9R8uobgH2L9nSOOidfx9E7YI3P+jzD7XNNRe8RHDGHB6eFP9wAhuLCbLE946GCQ8aoqdKAablsS0aDRhf7vriq0geyrq3lM6F/gK7LUxJcPuXTxctoBl2wK1XMhC2XPml0WSYSXHnRIT0RCIA6ppnYF6wr0MtDbmI1iQ0ugQ83r6z5JbFGIqV0L3hupFP67oCSTMSpZKhzE8OOLKcKW5+kIUKUZAwuJoOQOvzoCneYD/rLdNjkedYJCn/RY87vwCkXodeTgLYED2KikpKvPrjAfSLW8zo+o4WMybszX7ghjt0iJFA+AtDnR7z8BO26hTTZqVcjgvOLXmW9+XCVIAnESIb0EY2UDQ1nSLXz8L2VYlX+NEm37sdtCaGxZoKoW9AXbaUIt8hQXjS/6ZAdY7bDB1QIZmDWE2HQRJIvlUJKuAg8GfgD5TPIW4PFroMpFz1cvZLz7c/Q3QfV/tqwTptB8R1nro3sB8xGoOyEkTXJaw6iHLWjx70hHJVeQ8R1vns180BUILC0IYfkavYyi/g8Plq7EIO/6Xxqj0/c4fbtElN7ImLmmVrnIUHh3YDKHbrhhWH5MR+8KHHHxDXl03lcS5MyYpT8qW7U665fVAyAhr6SqzZ4AjjjFgsl1d2HfIX4QpcKhNwIO/8SIHpcc3E/7xkGxHNmPO18Z5DREqw/LPOi2lS04Qtl0NoW8n1ah5ByZCClXSYCYJiqMff33FuKHDowewXXSJUV5ShTfkQrW3yKoEtEgxo4MT+4rCvHmg2/kkof2Cd4Bas9gIXdbztRADeSqa9YK3zJMNozPXj0/+fx9QzZsuj2SopT716kuv2rIXlsNPqC3KY2r0JXyLnr18CjFjC2UfIzgFe4OtqZjYjrS1kdIznniT+WN7x4SODcw/xbuYwFel541LZ+AcCO4rJmvXc1HmyWjwXRqRPkccQWgKktyVUz+GP2Jgvg3Ug9l4KeaPy6ncNqOZrM4zZvilPO/fZBSSp+Hws7+PgWhILNuEjqtWJfydYuABUGEb53RrlGWFKuMGrY0r3H71VbQ3MtZamOX+yY7SqVTrYQ1IZeG6mUSl3fNfgYtg+w69x33n/t5jCcS2yzz42+kPlCTK4+KE3W6GwaXRS8wt9O+nnf06BOeP/HKBR2xE3LjZu5ZtUPUrPV9DgsIDk1/laUq9EuoWskfM1U9kXw3+FuPX8Q+Bs4ReVlMuBshvtTbGODRjE8FRLM9rjjPPr6o8BUC2rXIF+zAGqMMHafI2tdMDXI8IKzxsNzGHWHXKzGp+PbKDqIRnl8CcqMGQf5NOd3FCQ0Tl0xpUh9ClVlptw3sFARz/sQ00AJUl96p9cO6cBHWv/d7kDE74ZKpP1xXV/VvQIm7R9u8KAG897h4Gf/PmeF2r2F9sXHhvV8AjBYRs42f+0lvh8U/4Ve6AZMmmc3tgHY696yBD4SgDwFj0KCLd2gcrYRD6Y7RUelOuerP8mmeSIc7HYbHLOr6SKKcS+nv35yWIWmW34TdThgZ30Mq8tsO02KHUNWOgguQ9c47AbuC4eXaESDqXupFAs9irQMRM91131SbP9Cs4NW0YMr3nGrdhsjyRyHnGMpVsEWN8XiPiZ2OuxavHQOQXXdHjwpF84dtaTr88dG4W2t4+RK1cCtV9sQZRQz4Kh7PWF5csxw+W1wCKZzjqm4Q26Wa+CP/Oy5U0XCjiXWJX6Y6qcOmTOkHqJOWyPoBW0tscmxwYTiuOx/J21/zDE3JPpz6X0GrMGaLg8wWNASfws1mOsHJ+6nyUtAAJ5ay2bHWjJB5OQEL93zAlxqoqFqyvxD0AwFAcPkpACtbe1xC7brJVF47zmGvmI57RVWXRpGJivKvM5GT+Z1OZB4KnMA3IOmvgOuPhn16kdS759J4hmbq7ncmllQ0HrtN5Ma5Z87I0VZlwIdWOm0IePtYzc5OfZSgbNbxvsAMNK4AnxQnbwijnmmk6vTwM0zitvsdNxCeXQBUs9DN+dpyASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20Nok7IiEZ+hHiFeQhFYA1J1esmovB3pZH2WeepwAIsLR3XbYxaPCTfIlrdlekxytq7eMMSkOmLiCT6mCwADoIEMdrfcfVK3PwlC1unqNF8yJVNDnNIxr5Em0Q/uLbDuuftlEGmVrnIUHh3YDKHbrhhWH5NfpU4RQsHc4e1J49TEvJTNJy8p9EDho1jqiNdnPxxANpQHbpollTe7LPcrMOof8xDDMFmLcT8q4XVuhK/l2drZrLiHcQznIzGUffWK+rqpHDitvsdNxCeXQBUs9DN+dpyASoO7xFOkalaJ6y7mgVVWqWdiSm3caCWu0Inj20Nok+UuJMaYPvS/3SEa9pgCnAlG55245PR8v7+zCYKt5QFb1ZuChUmd5M3U7xP7vIUOS1tVTkzPjGUvGI4sUQlWlsd1hdTEzqvWolFiIR4wnTrikWhlG2tfJYod0KLsBPD0Tv2UU0f8e3fNNILyF7zlo4yAbVeecLGqry9nEKYXShXy39e1PTOY6BQOEaiISh67S3D7OXwTnWfsA89F2elD3Gto71DWZzw/MGgYCoCGYBHduv51k5MIPpWmkrVcBU2RfEABIpGF4lHpglzv+smvaKKYdNOdf+JXCVAynmcFkvDlnA1SlkK8Du+WsnTgp70/wc6wX5L9RHuLXOkDVzB5sCbz0t7QaUz3+mpohv71q4Wyy/8gmMr6l4vLfvQ29BliHGfo0CUgpOGnzbSBrYoajXk3sZqAZCINu8LknvQ9wlYrtMejbWMiqfkpY+hMdqsRSyD6fk6Vd1kBN8k9yAaORl5ups5ZwCqX4IrHI56lMUQMJSfcRvw+M1Pj8Ft+H1qAnUUje0Je774Se4uwJBccxxU5fkjMo0TMsOSeL6Vvnn8Gqs3p8Kuy+576CJHr4CP6Q1miU7unHvux1T0twwAJoSlQ0bhtXuQ94KmEJjp1z2gVavRj/Ae9iXyUpdmwpDLRU7mtQH7Eu3+q8QGoctbBW9m3PjBDi8C0TBNLT0LOfH7CPcC4J+/bo9z8GgYZ/2sQYI2Z1UlPEHRo4Hwi56Fs7cSWOHbr6ggzOThMTZgJQD5i9eN9NKrdW16ZcGUt9/sRAAFDnupj6a99v0HH0cDZN3TpCsT1Rqjs0Wky9V8znvOZheeZwmb6en3UXNnc+9YGxkjAIOEu2NaT8KUGxYWju8TTjmISYOb+CvhOD3q8X8HQdgJA1xVmTiC3YGQgiemwFUgiZ0FMIGiw/G/5Gln+sRbc3RDoMDAkKalZKhGcCAC647RQc0e+kn2/HGqoxNYTafInzqubKvWfqrQRVxkJT9MkbgyD+P/87gvn2DLaE/bQrNzLh7/OmFmcwt1oY7wje1tb57cTJQTWwInjdkzOtFAs/D7j9QsRxrdvqerILZ9lV6Bw92gRJ1Px0eGaAkc4+CXneNE6PpEOzP0JF/btYIHx7BWq/mg54tF1wbimI3ELffbc4r/Pe0Go6x4V3AqJCbeKaRMIfvGFKlMqtfFbWwHEUpF83qpstT5MJ3wvh3BLglEP5IGBF6UssLQhuSqZKVuzNuY9tPbOddlQZbfgNX2VHNsBW9Gm1C9AbfRcFnpUFVPtV3SK8QxQ+EmQ5vLCXHrpeDGaMZHWkkbCwzSQb5Wk3WMo/oU4Nq4WPG19Us9NSp0HesR+ECBRo51L60Lb2CisfDJ0jmvViwhe+XjiyyKtG24XYtUCQQ4NC8EFVfdUlRzbAVvRptQvQG30XBZ6VJbh5aDUs4s/f8Wpf6hSbEyihOx3eDF02JGNfAzZIHrzPn5FBB44lB9PL/VoGq+LrHKxiVVHcAmAPI0Pv9uAbrHRHnszj1PtuN3xzFQ0Ni9zqXtej1KgSfB9aV4nhZ9lQ+enn+Y4/6xzUqeAAjTpHfX0WdL2CV2QT4KfygSJferBPRgVhiWkmrC6jsu807aCwXYeHyqQoujGdUd5mZEThfiuUcKbVJzgwYSDO5r28PJDqFngzDIJ4KsAJJTQj+g+e5/XXSpDsBHvBUsWTfyaWCFtDanmZlWm4H4xxxLbN3CaYSLTKNTfNcPUCJ+tzUER42sa3G9hMTdzCo9qBPH59HQKikpZ8i4L1ydjS8lez8r1SLoD/k/r7Ts8TTRxdVaSESHKcFdzYMAKv7fO2flstQNqbn3T8Tjht6R0b6eIFetq3wZ/yzZdpxN/wkJgP6IznHcvxMEj6fNaydDUZ1x719q0/t3WuCZNuojw+K1oew+ovqWX3E9C+QMXbqtC/j6SMvI4tNqQsFlDRRWxh6qYSBWbo8EkOi8vc1XWchTcRHroXbVaSoZjbc8XSNJ3juMA4zAqUf65xi61hXQpzqanzCLhWq9NZ67WR9MgAGWI3/C/ZEa3nAgLHD6BJBHr9shTjgm9Iu9bMciJQ4SViL7v2EArM0BInawUwOXYRrNypM29x47S40riOlO6nRKoq7g8VReffNa4dQk5wgjBsrXWO2A/9a00+XdC3WVllcpbCwSvKBHG+FD0QuaVKVw32AtZEADb5algwcuX/uGGexeQfZzSlT7wgmeYfr/q7a0+yvnXJAuD/bP/ov/L91ugatsuFjNauk3606F3zXDiyhb6ANUitypnCgQmTJ2FakSRJTLfMsOtugkW0apZXkkrFy+IJVSu7uH9BCZAduTkINzqhx8nthEQKUEue9m5WYaWp8VuVC9uOigDkYaLa+hkfQE3DORScCI5F7cjxHoTN7EZcThdq/7KuQMli6QTWvsxXkhIMWXkyYoQLPddc144mhb/jlAVvqaZd14acko6SMG5WTb3BpfbBv1n566I4ciX98CA7lAxe1i0jNrj94eOkdksgh4RSVHx600GDsPiqF4xYGV6qsmFUEwB0jo+E/6L6tcq7rO3GVG4VT7xF2nIY2o16SEyrXexe0nq4C5vfivnRFNKi99Er8fk9+HMNyx8Gjlk9kyORRNXurzLfn+vVlTDwNnwnDr9euEIfCV4ARrJklLOrDU+zIf6boafw0MD0B+5vjczf37oc+jnWfpnVG1pb8m8/w5GLruisDoF6bYENDSriwIa4XHfAk80ggv89+HtlK0Wb9Co5r4FcnEBju0pJ+TnTO34iGJfRW38FVQ6iICC+6aNNKZSHK2tezNTV9ditlSp3tm5VkDuOz9pnBbRLT6AR60TOiDHJudKydi0CyVXUGrzBPxukpcpU9HGJWVMJktzVDRCQr+Ifmxl3XyFQsVLXKkE9moPs69aJDjxIVB9AVDT56RdvEx1iRm3N8Kfl8Ahl8LrIDSYLyYvuGoK5hggIz6Vv/BsUCwMppyB7mwIImdTS52g/wusP4gGYwKsx5fKqoaw/9JhvKyIhWi2Ty8WJN9mK3QjoloCpdIGihoott5eG7g6L3WZ8ijzhMiI3eOwzWtMuaA2g05swdhx2I6Gq3GP9jnsqjldkxvx9n7Tg3oVCmNdkcTTjwei4wicAkhhSCf8YWS9EkuC9dW85keTm+z2ldBca0OQnTeBrt0H6jDfPBCHPIViq9FGmrVWECQvz+3+7IVuYTAsl+zUMoVzoSDIA/b2a4zyM90I13Er4WMF5OcVjejeo/nWcNtyGLB8NdniUG6vbvQH/ySGxIRYztMX6zYfMqe3z1uiQthDVblWRJuE0AyVgr5PQNEF5tD7vyq7AfQMNKLvEPorrSkdsOqL/dTFTC0WtEa3FZM7nk4yLToiEPvUdWPNIOOo9nBSho7jW/BNpp3aE8icxYeXblxLGh0Cs25jd41vOwWZuECbpyp78LHuIf6NkPvsWcoN9S+vXKgt6pELwAlMAt+Y9B+smJP+M6Ecg86lIypOVYszJ1naMWU5OrQND+eJ586q7WtP5WAILMi3SrILmAOvID3emT711i2tvIEcyvvn+EBkp2wyOsdDjfqfGw+WLUz6Nic+R2JmG46tRbWtCteDDpoTHz4um+Zk5E6eVHbdJDNwPv8gR9NVV56veANaTMvkDybmHyTAC9lg4sNz+As6FpwLP21w6/0yyOCGfb13rA2IGHKXh2q7pveKOWsOFBk/mkh44BMvdCon0v/xWDviIOwekf5/sxlIZjzORwHYn58YwE8C5dB8+3c0Q9KRK6ogUkQRoTUfSsJBcq6zGDU1TsUOudlddcCGCSs25BJGZSwIlwAZKRqSc9jgmaCQSBgneG+JVapx1ni95a8BfAttpRfQXpl5RkaF9sffMHu3wOtXc91flgLxCTRKhM+zLPXHW/IHeWDEFsLLokNzt0W4s77Erl9fbqSMd3BrEGELTe2zNc14THYfYXFkr5eBOmgh3B1/g6GV3jrMSiGXoCYnw7By03Hm6KteWCbc8a6hewC2DXbBvUdEUkXU5r5hab9FDol7mnrIPvbd/q5m3EmtreEIa52gsQEcmiDnX7qFEOGxpWXs6VQuB/++CpzrzGf+vVxYmNURyg65+KqJ/mKhUPZRFqMSsfyTadCHW8riRnYgZBfi6DZEHRqWhTPKKY5A2BcOeXu70a/+zvpo+V1C+bP0FOJlrHt0xk7O8t9ShDaowdVKxF0hE8rvkwvRlM8sLS/CUbNd3iFslh/RJ+yvSTaa5rJwbSMGJ1bApBh6UR9bEDA2ngcfPAdrkhU/8cajDkWLBZwObFmQHIn805E+yrYtzJeEahu6i8Vwwo5NIp2rGn9ULkt7PxM9UVgCDJaIARmmDr8vHo04t6cfz+9F3L2Kffqzn/286jYZNcLjGuK161lag+X6Vi5FtgYkCECROqcNq/4dMCIO1YeOwAtotlHZIKMRTT6eLkY/YfbbUq3wWnZxhdhKhKuCiqi51etucRhBLF135doZyvZiqi1AEsFX/OjxlSr24vgtenb4fnb1Zu27Kkx08pVPKa3vHOEZ9RXNYDFyNU3NcqafEcDfsP+zD4Oi4LPHnCrZHKOm6DkhV5vMnHdHmT48Iko80/XNQop+chwcuRWmGeJSYPbnEbSjYoj02tIKnAAiWOUrEJAnqQiQ4k2ATSVtP73GO5qmVMNQ5S9hFuxRQXEN6ZRQ2WKFlO6EGwnDZi/0L2pZ24aKt93oFl+LLpF25sPule6lCCs5ApqutDixyF7P4VW2YeEoUM7avFfX2Eu0biuww6rjl4X9rvmX5akjC1dpzttjQhmjgUWOxft/J7cD7QFqh/wvwrZGBl4mTxi5b/v3IulXdN7gW65aVARGya1pqJd+l+l+9GMLeCWIixt9Os71O4QW4CXouCqs3TJGImOv/AKUt2DA3XXkpOCRSI+wlTJBLdb8QrQxZ1T9ssbNAgOdl4DI2G1iU35lkp8FIAmk3WMo/oU4Nq4WPG19Us9NSp0HesR+ECBRo51L60Lb2IgczFFIMXe9Duph4wVhPb2tG24XYtUCQQ4NC8EFVfdU7k3gjLuSheXiU19uX8+AF2zMUCfqIx2wI1yWZjiNyvM8u7bWvs6OW6AoIjQRDnA5SDqGECcvIbsLumdDQO8O6D+pDsUrzQnfyNBHY2vg6jvduhoaqh60B+C4XjPbDfLoS3PkX4/UjC+X6QvcvrMmPeflMsgkok4ajz8gpWsvah9L/cLeDJbISsrfD1HlRHr8ZWHjv6WftlfiKo7ug3qdUgu2fIgSg1y7nP9Wd9xWgEtl9/4tBnNsdWVesCH7ig80qwx7AWvLNSwl72dPRfpq4wPJeNZP/fiGImQNAzNb/7bBfpCm8Eqi0KzgYu31tgXFwCKCdg38xTLFTPmTvB3pVWAxmGf+KalBDavTSYGPwwugt5r+z4O+oiw3fbv97zJASVE2pft9q1o3x9ol8fB+PBOgHPPY/N38nbDdbVHVnGr4ctabnStPK4PjgGll0Mkh'
js = execjs.compile(a)mi_wen = js.call('f',data)
print(mi_wen)dery_data = js.call('s',mi_wen)
for i in dery_data['list']:print(i)

 

结果展现:

 

第一次写总是出错的代码:

const CryptoJs = require('crypto-js');
function f(data){j = "DXZWdxUZ5jgsUFPF";z = CryptoJs.enc.Utf8.parse(j)data1 = CryptoJs.AES.decrypt(data, z,{iv: CryptoJs.enc.Utf8.parse(j.substr(0, 16)), mode: CryptoJs.mode.ECB,padding: CryptoJs.pad.Pkcs7});return data1;}function s(data1){return JSON.parse(data1.toString(CryptoJs.enc.Utf8));
}

这样写在python中调用s函数的时候会报错:

TypeError: unsupported operand type(s) for +: '_io.TextIOWrapper' and 'str'

execjs._exceptions.ProgramError: SyntaxError: Unexpected token o in JSON at position 1是一个错误信息,表示在的位置1处出现了意外的标记"o"。这通常是由于JSON格式不正确导致的。

JSON(JavaScript Object Notation)是一种常用的数据交换格式,它使用键值对的方式来表示数据。在JSON中,字符串值必须使用双引号括起来,而不是单引号。如果在JSON中出现了意外的标记,比如在位置1处出现了"o",那么很可能是因为JSON格式不正确。

要解决这个问题,你可以检查你的JSON数据是否符合JSON格式的要求。确保所有的字符串值都使用双引号括起来,并且没有其他语法错误。另外,你还可以使用在线的JSON验证工具来验证你的JSON数据是否正确。

因此记住了,再碰到这种涉及js的解密时,在第一个函数体内,就返回 data1.toString(CryptoJs.enc.Utf8)

 

 

 

 

 

 

 

 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/716196.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习-03-机器学习算法流程

总结 本系列是机器学习课程的第02篇,主要介绍机器学习中专家系统的应用介绍 本门课程的目标 完成一个特定行业的算法应用全过程: 定义问题(Problem Definition) -> 数据收集(Data Collection) -> 数据分割(Dataset Spit…

守护无价数据:文件备份的重要性与实用策略

一、数据安全:为何文件备份至关重要 在数字化时代,我们的生活和工作越来越离不开电子设备与其中的文件数据。这些文件可能包含重要的工作文档、珍贵的家庭照片、个人的创意作品等,它们是我们回忆的载体,也是我们工作和创新的基石…

PDF Expert for Mac v3.9.2中文激活版下载

PDF Expert for Mac是一款易于使用的 PDF 编辑器和注释器,专为 Mac 设备设计。它允许用户轻松查看、编辑、签名、注释和共享 PDF。该软件使用户能够向他们的 PDF 添加文本、图像、链接和形状,突出显示和标记文本,填写表格以及签署数字文档。它…

金融行业专题|期货超融合架构转型与场景探索合集(2023版)

更新内容: 更新 SmartX 超融合在期货行业的覆盖范围、部署规模与应用场景。新增 CTP 主席系统实践与评测、容器云资源池等场景实践。更多超融合金融核心生产业务场景实践,欢迎下载阅读电子书《SmartX 金融核心生产业务场景探索文章合集》。 面对不断变…

mac iNode 断开后没网 经测试 后台还在运行

界面断开,但是连不上网:实际上可能是服务在后台还在运行 解决方式:终端执行命令 ,手动停止iNode服务 sudo /Library/StartupItems/iNodeAuthService/iNodeAuthService stop 停掉之后,有可能连不上网,断开wi…

基于springboot+vue的美食推荐商城

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

网工必懂的ICMP协议

福建厦门微思网络始于2002年,面向全国招生! 主要课程:华为、思科、红帽、Oracle、VMware、CISP安全系列、PMP....... 网络工程师实用课程华为HCIA课程介绍 网络工程师使用课程华为HCIP课程介绍 网络工程师使用课程华为HCIE课程介绍 因特网…

更详细的软件测试理论基础:流程,开发、测试模型,测试分类,测试用例及其设计方法,缺陷

文章目录 一、测试流程二、开发模型1、 瀑布模型2、增量模型3、快速模型4、其他 三、测试模型1、V模型2、W模型 四、测试分类五、测试用例 test case六、测试用例设计方法1、等价类划分法2、边界值分析法3、因果图法4、判定表法5、正交法6、场景法7、流程分析法8、错误推测法方…

数据分析-Pandas数据的探查面积图

数据分析-Pandas数据的探查面积图 数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律? 数据表&…

第16章-DNS

目录 1. 域名 1.1 产生背景 1.2 概述 1.3 域名的树形层次化结构 2. DNS 2.1 概述 2.2 工作机制 3. DNS查询模式 3.1 递归查询: 3.2 迭代查询: 4. 相关知识点 4.1 集中式DNS 4.2 国内通用DNS 4.3 配置DNS代理 1. 域名 1.1 产生背景 ① IP…

【Excel PDF 系列】iText 库直接实现表格 PDF

你知道的越多,你不知道的越多 点赞再看,养成习惯 如果您有疑问或者见解,欢迎指教: 企鹅:869192208 文章目录 前言生成表格 PDF 效果引入 pom 配置代码实现定义 CreateExcelToPdfModel 对象主方法 前言 最近遇到生成 E…

EchoServer回显服务器简单测试

目录 工具介绍 工具使用 测试结果 工具介绍 github的一个开源项目,是一个测压工具 EZLippi/WebBench: Webbench是Radim Kolar在1997年写的一个在linux下使用的非常简单的网站压测工具。它使用fork()模拟多个客户端同时访问我们设定的URL,测试网站在压力下工作的…

二维码门楼牌管理系统:城市数字化管理的新里程碑

文章目录 前言一、二维码门楼牌管理系统的构成二、二维码门楼牌管理系统的功能三、二维码门楼牌管理系统的应用四、二维码门楼牌管理系统的未来发展 前言 随着城市管理的数字化、智能化水平不断提升,二维码门楼牌管理系统作为一种创新的城市管理方法,正…

Ubuntu20.04: UE4.27 中 Source Code 的编辑器下拉框没有 Rider选项

问题描述 最近想用 Rider 作为 UE4 开发的 IDE,但安装好 Rider 后,发现编辑器下拉框中没有 Rider 的选项,我检查了 UE4 的插件,发现 Rider Integration 插件已经安装且启用的。 环境:Ubuntu 20.04 UE4.27 Rider2023…

应急加电电源车-在航空航天、武器等多领域的应用

应急加电电源车是一种专门设计用于在紧急情况下为其他设备提供电力支持的车辆。它通常由电池或燃料电池驱动,可以在没有外部电源的情况下为其他设备提供持续的电力供应。这种车辆在灾难救援、野外作业、军事行动等领域具有广泛的应用。 应急加电电源车通常具有以下…

WordPress建站入门教程:如何在本地电脑搭建WordPress网站?

前面跟大家分享了『WordPress建站入门教程:如何安装本地WordPress网站运行环境?』,接下来boke112百科就继续跟大家分享本地电脑如何搭建WordPress网站。 小皮面板(phpstudy)的“软件管理 – 网站程序”虽然可以一键部…

Springboot+vue的高校教师教研信息填报系统(有报告)。Javaee项目,springboot vue前后端分离项目。

演示视频: Springbootvue的高校教师教研信息填报系统(有报告)。Javaee项目,springboot vue前后端分离项目。 项目介绍: 采用M(model)V(view)C(controller&am…

数据审计 -本福德定律 Benford‘s law (sample database classicmodels _No.6)

数据审计 -本福德定律 Benford’s law 准备工作,可以去下载 classicmodels 数据库资源如下 [ 点击:classicmodels] 也可以去我的博客资源下载 文章目录 数据审计 -本福德定律 Benfords law 前言一、什么是 本福德定律?二、数学公式三、应用…

最新会声会影2024旗舰版系统配置要求

大家好呀!小编今天给大家带来了一个超级实用的信息,关于会声会影2024旗舰版的系统配置要求! 会声会影2023-安装包: https://souurl.cn/gtyDFc 会声会影2023-安装包: https://souurl.cn/ZQ6QWp 会声会影2022-安装包&a…

回归预测 | Matlab实现CPO-BiTCN-BiGRU冠豪猪算法优化双向时间卷积门控循环单元多变量回归预测

回归预测 | Matlab实现CPO-BiTCN-BiGRU冠豪猪算法优化双向时间卷积门控循环单元多变量回归预测 目录 回归预测 | Matlab实现CPO-BiTCN-BiGRU冠豪猪算法优化双向时间卷积门控循环单元多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-BiTCN-B…