第十八届全国大学生智能汽车竞赛——摄像头算法(附带个人经验)

文章目录

  • 前言
  • 一、摄像头图像处理
    • 1、摄像头图像采集
    • 2、图像二值化与大津算法
  • 二、左右边界,中线扫描

前言

参加了第十六,十七和第十八届全国大学生智能车竞赛,对摄像头的学习有部分心得,分享给大家,三届车赛,车赛生涯也算是到了尽头。打算从基础的算法开始,给各位一些个人看法,也是对车赛的一次总结。

一、摄像头图像处理

闲话:其实摄像头的算法有很多种,弄了两年摄像头,也只是学会了其中很小的一部分,但最终,作用都是大同小异的,也不必太过于追求算法上的完美。只需要达到能稳定提取特征,识别元素其实就够用了。(个人用的是普通大津+二值化+八领域做边界提取)

1、摄像头图像采集

打开摄像头相关例程,可以发现其实最终摄像头所采集的数据都存入了一个二维数组中,工作方式也很简单:图像采集,将图像采集标志置一。手动清零,就可以达到重复采集的目的。(没有相关例程的可以去找客服要,记得B站上也有逐飞的摄像头摄像头图像采集视频讲解)

逐飞科技CH32V307摄像头例程

2、图像二值化与大津算法

智能车使用的摄像头所采集的图像一般都是灰度图像,将图像分割、数字化成一个个的数(一个个的像素点),0~255,像素点颜色越白数字越大。我们可以看出图像信息很丰富,图像处理方法自然也就多种多样了,首先我们可以将图像二值化

二值化就是将图像上的灰度点分别设置为0,255(0xFF)(有点像二级分化)。图像直观上就会变为黑白图像。我们该按照何种规则分黑和白呢?这时候就需要我们找出黑、白的分界值(也就是阈值)(大于阈值即为白,反之为黑),然后可以遍历图像数组中每一个像素点,大于阈值设为0XFF(白),反之设为0(黑)。(二值化有一个进阶的思想:图像每一个点都需要二值化嘛,我们能不能只将要使用的点二值化呢,这样速度是不是就快了,这个其实开始没有必要弄,有一张完整的二值化图也方便我们理解)

:1,数组均从零开始。
2,二值化不能作用于摄像头采集原图上,应该重新定义一个同大小的数组,专门存放二值化后的图像信息。(防止在进行图像处理时,摄像头重新采集数据,覆盖之前数据)

/*
mt9v03x_image_dvp : 原图像   		 存放摄像头灰度原图
mt9v03x_image_baz :二值化图像        用于存放图像右边界 
WHTIE  宏定义  替换作用 与0xff相同
*/
#define WHTIE 0xff //255
#define BLACK 0x00//使用宏 通过单词代替抽象的数字 for(uint8_t i=0;i<MT9V03X_DVP_H;i++)             //MT9V03X_DVP_H:图像高{for(uint8_t j=0;j<MT9V03X_DVP_W;j++)         //MT9V03X_DVP_W:图像宽{if(mt9v03x_image_dvp[i][j]>=threshold )  //threshold:图像阈值{mt9v03x_image_baz[i][j]=WHITE;}else{mt9v03x_image_baz[i][j]=BLACK;}}}

后面就是确定图像的阈值了,因为真实环境亮度是变化的,单纯的给定阈值二值化就显得不够稳定,在图像的基础上动态的计算阈值适应性更强。我选择的是大津算法,也是常用且基础的一种了,缺点就是运算时间有点稍长。

大津算法的相关我就不说了,网上有很多相关介绍。(其实我理解的也不太透彻, 手动狗头保命)

二、左右边界,中线扫描

在二值化之后,我们得到了一个由黑和白组成的二维数组,而我们的目的是让小车时刻处于赛道中间位置,也就是图像中间位置。我们想要小车不出赛道,如果能让赛道的中线始终贴合图像数组的中间(此处图像数组的中间我们可以想象为图像的宽/2),那我们的小车是不是就不会出赛道了。图像数组的中间就像PID中的理论值,实际赛道的中线就像实际值。这样我们是不是就可以将图像与PID联系起来。
说回边界扫描,想直接找赛道中线还是比较难的,主要是没有明显特征,我们不妨先寻找左右边界(左右边界黑白相夹),左右相加除二求得中线。这样就得到比较真实的中线坐标,再对比理想中线坐标(图像中间,也就是图像宽/2),从而求出中线偏差,用于PID控制。思路大抵都是这样,但找的方法就很多种多样了。

基础的方法就是从中间往两边找,缺点是遍历了整幅图像,消耗时间稍长,而进阶的就有对普通两边找线方法的优化,(如:双最长白列法)。再进一步稍微复杂一点的有八邻域,迷宫法等等。

我们先来看看普通的两边找线法:
在这里插入图片描述

基本思路就是从最下行往上 (利于对之后对中线的处理),每一行从中间往两边,分别寻找左右边界(特征:黑白跳变),存入左右边界数组。
同时存下中线坐标,用于下一行中线的扫描。(这样减小运算量的同时还可以加大中线扫描时的连续性)左右边界相加除2求出该行中线坐标,存入中线数组。
注:

/* last_mid:                   边界扫描起始坐标 每行边界从此开始 起始行为图像宽/2 后为前一行图像中线坐标MT9V03X_DVP_W:              图像宽MT9V03X_DVP_H:              图像高mt9v03x_image_baz[][]:      二值化图像数组left_flag[] :               左边界存在数组 左边界存在 标志置1left_flag[] :               右边界存在数组 右边界存在 标志置1left_border[]:              左边界数组 存放左边界坐标right_border[]:             右边界数组 存放右边界坐标Mid_border[]:               中线左边数组 存放中线坐标
*/last_mid = MT9V03X_DVP_W / 2;    
for (int i = MT9V03X_DVP_H - 1; i >= 0; i--)//从下往上扫描
{left_flag[i] = 1;right_flag[i] = 1;for (int j = last_mid; j > 1; j--)//中间往左边扫描{if (mt9v03x_image_baz[i][j] == 0xff && mt9v03x_image_baz[i][j-1] == 0x00 &&  mt9v03x_image_baz[i][j-2]==0x00)//黑黑白认为找到左边界{left_border[i] = j;                       //将左边界存入左边界数组left_flag[i] = 1;                         //左边界找到,标志置0break; 				//跳出循环}}if (left_flag[i]==0) left_border[i]=0;              //补线标志未置一,此行左丢线,取图像左边界for (int j = last_mid; j < MT9V03X_DVP_W-2; j++)  //往右扫描{if (mt9v03x_image_baz[i][j]==0xff && mt9v03x_image_baz[i][j+1]==0x00 && mt9v03x_image_baz[i][j+2]==0x00)//白黑黑认为找到右边界{right_border[i] = j;                        //将右边界存入右边界数组right_flag[i] = 1;                         //右边界找到,标志置0break; 				//跳出循环}}if (right_flag[i]==0) right_border[i] = MT9V03X_DVP_W-1;           //补线标志未置一,此行右丢线,取图像右边界Mid_border[i] = (left_border[i] + right_border[i]) / 2;		//中线坐标mt9v03x_image_baz[i][left_border[i]-2] = BLACK; 	//左边界涂黑mt9v03x_image_baz[i][Mid_border[i]] = BLACK; 	//中线涂黑mt9v03x_image_baz[i][right_border[i]+2] = BLACK; 	//右边界涂黑       /* 注意  左右边界-2 +2 很容易存在数组越界 导致程序卡住 如  左边界点  left_border[i]=0;   [right_border[i]=MT9V03X_DVP_W-1自己使用时可以加个限制如mt9v03x_image_baz[i][(left_border[i]<2?2:left_border[i])-2] = BLACK; 	//左边界涂黑*/last_mid = Mid_border[i];		//中线查找开始点,方便中线寻找
}

可以在图像上把边界显示出来,方便后面观察图像,像这样:
边界显示
后续给各位说说我对八领域的理解,欢迎大家关注!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/710688.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言基础】:深入理解指针(一)

文章目录 一、内存和地址1. 内存2. 如何理解编址 二、指针变量和地址2.1 取地址操作符(&)2.2 指针变量和解引用操作符(*)2.2.1 指针变量2.2.2 如何拆解指针变量2.2.3 解引用操作符 2.3 指针变量的大小 三、指针变量类型的意义3.1 指针的解引用3.2 指针 - 整数3.3 void*指针…

HCIA-HarmonyOS设备开发认证V2.0-习题

目录 习题一习题二&#xff08;待续...&#xff09;坚持就有收获 习题一 # HarmonyOS简介 1. 以下哪几项属于OpenHarmony的技术特性&#xff1f;&#xff08;&#xff09;A. 统一OS&#xff0c;弹性部署B. 一次开发&#xff0c;多端部署C. 硬件互助&#xff0c;资源共享2. Ope…

C# WPF编程-创建项目

1.创建新项目 选择“WPF应用程序”》“下一步” 2. 设置项目 设置项目名称&#xff0c;保存位置等参数>下一步 3.选择框架 4.项目创建成功 5.运行项目

两张二值化图像融合

python实现&#xff0c;已知两张二值化图像&#xff0c;对比两张图&#xff0c;将像素点一致的坐标保留原来颜色&#xff0c;不一致的坐标像素值变为128 读取原图 import cv2 import matplotlib.pyplot as plt import numpy as npcup_file_pathname"/home/wzc/zlt_self/…

Opencv实战(5)平滑处理与常见函数

平滑处理 Opencv实战&#xff1a; Opencv(1)读取与图像操作 Opencv(2)绘图与图像操作 Opencv(3)详解霍夫变换 Opencv(4)详解轮廓 文章目录 平滑处理1.均值滤波2.方框滤波3.高斯滤波4.中值滤波5.双边滤波 常见函数(1).createTrackbar()(2).SetMouseCallback() 图像的平滑处理是…

细数Android开发者的艰辛历程,android零基础

首先我们来看一下组件化项目和传统项目的区别: 在传统的项目里 我们通常情况下会有一个commonLib的Libary模块和一个app的application模块&#xff0c;业务中的逻辑都写在app中各个功能模块放到不同的包下。这样做有以下几个主要的缺点&#xff1a; 1.无论分包做的再好&…

Zynq—AD9238数据采集DDR3缓存千兆以太网发送实验(一)

ACM9238 高速双通道ADC模块自助服务手册AD9238 一、实验目的 本次实验通过电脑上的网络调试助手&#xff0c;将命令帧进行发送&#xff0c;然后通过ACZ7015开发板上的以太网芯片接收&#xff0c;随后将接收到的数据转换成命令&#xff0c;从而实现对ACM9238模块采样频率、数据…

Tomcat布署及优化

1.Tomcat简介 Tomcat 是 Java 语言开发的&#xff0c;Tomcat 服务器是一个免费的开放源代码的 Web 应用服务器&#xff0c;Tomcat 属于轻量级应用服务器&#xff0c;在中小型系统和并发访问用户不是很多的场合下被普遍使用&#xff0c;是开发和调试 JSP 程序的首选。一般来说&…

在实训云平台上配置云主机

文章目录 零、学习目标一、实训云升级二、实训云登录&#xff08;一&#xff09;登录实训云&#xff08;二&#xff09;切换界面语言&#xff08;三&#xff09;规划云主机实例 三、创建网络三、创建路由器2024-2-29更新到此四、添加接口五、创建端口六、添加安全组规则七、创建…

反相输入放大器与生俱来的坑

我们都知道反相放大器能将输入的信号反相放大&#xff0c;这是很基本的知识&#xff0c;学过电路的一般都知道。反相放大器的公式为Vout -Vin*Rf/Rin&#xff08;运算放大器应用汇总&#xff09;。根据已知的公式&#xff0c;能很轻松的完成设计&#xff0c;但反相放大器与生俱…

每日一类:QString类深入讲解

QString类是Qt框架中的一个核心组件&#xff0c;设计用于方便、高效地处理Unicode字符串。与标准C中的字符串处理方式相比&#xff0c;QString提供了更为丰富的API&#xff0c;支持国际化&#xff0c;并且内部使用UTF-16编码&#xff0c;能够处理世界上几乎所有的语言文字。 设…

【精简版】Ubuntu/Linux Anaconda 命令行终端安装

网上重复内容很多&#xff0c;大都啰里啰嗦&#xff0c;特作此笔记。 【精简版】Ubuntu/Linux Anaconda 命令行安装 1 下载安装包1.1 寻找适配版本安装包1.2 下载 2 运行安装程序3 设置安装路径4 添加环境变量并运行4.1 环境变量4.2 运行 5 验证安装成功感谢及参考博文 1 下载…

音频提取使用什么方法?视频提取音频

在数字技术与多媒体日益普及的今天&#xff0c;音频提取已成为一个常见且重要的任务。无论是为了制作视频、编辑音乐&#xff0c;还是进行语音识别和分析&#xff0c;我们都需要从原始材料中提取音频。那么&#xff0c;音频提取通常使用什么方法呢&#xff1f; 1. 使用专业的音…

【Git教程】(七)变基与拣取 —— 变基操作的概念、适用场景及其实现方式,拣取操作的实现 ~

Git教程 变基与拣取 1️⃣ 工作原理&#xff1a;复制提交2️⃣ 避免“钻石链”3️⃣ 什么情况下会遇到冲突4️⃣ 移植分支5️⃣ 执行变基后原提交的情况6️⃣ 提交的原件与副本存在于同一版本库中所带来的问题7️⃣ 捡取&#x1f33e; 总结 通常&#xff0c; 一段提交历史中往…

编写科技项目验收测试报告需要注意什么?第三方验收测试多少钱?

科技项目验收测试是一个非常重要的环节&#xff0c;它对于确保科技项目的质量和可用性起着至关重要的作用。在项目完成后&#xff0c;进行科技项目验收测试可以评估项目的功能、性能和可靠性等方面&#xff0c;并生成科技项目验收测试报告&#xff0c;以提供给项目的相关方参考…

Docker技术概论(2):Docker环境的搭建

Docker技术概论&#xff08;2&#xff09; Docker环境的搭建 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blo…

自动采集API壁纸系统源码自适应手机端

HTML5响应式自动采集API壁纸系统源码自适应手机端 瀑布流加载 源码下载&#xff1a;https://www.qqmu.com/2303.html

yolov8涨点技巧,添加SwinTransformer注意力机制,提升目标检测效果

目录 摘要 SwinTransformer原理 代码实现 YOLOv8详细添加步骤 ymal文件内容 one_swinTrans three_swinTrans 启动命令 完整代码分享 摘要 Swin Transformer通过引入创新的分层注意力机制展现了其架构的独特性&#xff0c;该机制通过将注意力区域划分为块并在这些块内执…

进阶了解C++(4)——多态

在上篇文章中&#xff0c;简单的介绍了多态中的概念以及其相关原理。本文将针对多态中其他的概念进一步进行介绍&#xff0c;并且更加深入的介绍关于多态的相关原理。 目录 1. 抽象类&#xff1a; 2. 再谈虚表&#xff1a; 3. 多继承中的虚函数表&#xff1a; 1. 抽象类&am…

MySQL 用户账号迁移

文章目录 前言1. 工具安装1.1 下载安装包1.2 编译安装 2. 用户迁移后记 前言 有一个典型的使用场景&#xff0c;就是 RDS 下云大多数都是通过 DTS 进行数据传输的&#xff0c;用户是不会同步到自建数据库的。需要运维人员在自建数据库重新创建用户&#xff0c;如果用户数量很多…