vivo 在离线混部探索与实践

作者:来自 vivo 互联网服务器团队

本文根据甘青、黄荣杰老师在“2023 vivo开发者大会"现场演讲内容整理而成。

伴随 vivo 互联网业务的高速发展,数据中心的规模不断扩大,成本问题日益突出。在离线混部技术可以在保证服务质量的同时,极大的提升数据中心资源利用率,降低成本。混部技术涉及任务调度、资源隔离、运维观测等一系列技术难题,本文将介绍 vivo 在混部技术方面的实践和探索,为读者提供借鉴和参考

一、在离线混部技术背景

1.1 为什么混部

图片

数据中心运行的服务可以分为在线服务和离线任务两大类,它们具有不同的资源使用特征。

在线服务是指那些长时间运行、对时延非常敏感的服务,如电商、游戏等,在线服务的资源利用率存在明显的波峰波谷现象,平均利用率较低。离线任务是指那些运行周期短,有容错性,对实时性要求低的服务,如数据转换、模型训练等,离线任务在执行过程中资源利用率很高。

在混部之前,在线和离线都是分开独立部署,机器不共享,无法形成有效的资源互补,这导致数据中心整体资源利用率不高,却要不断购买新机器,造成了资源浪费。

1.2 混部技术定义

图片

通过混部技术,我们可以将在线和离线部署到同一台物理机上,形成资源互补,提升物理机的资源利用率,降低成本。混部技术最早由谷歌在2015年提出,经过多年的发展,混部技术已经趋于成熟,目前业内利用混部技术可以将数据中心的CPU利用率提升至40%左右 。

vivo在2020年开始调研混部技术,2023年混部平台投入生产,目前我们已经将部分混部集群的CPU利用率提升至25%(最新已达30%)左右。相较业界标杆这还有一定的差距,但随着混部规模的扩大,我们将挑战更高的目标。

二、在离线混部平台实践

2.1 混部平台产品能力

图片

混部平台必须具备两个产品能力:

  • 第一、强大的调度、隔离能力

  • 第二、完善的监控、运维能力

强大的调度能力解决了,我们如何将离线任务高效、合理的调度到在线服务所在的物理机上。而强大的隔离能力保障了在线服务的质量不受离线任务干扰。完善的监控和运维能力则可以让我们洞悉整个混部平台的运行情况,及时发现潜在风险,帮助运维人员更高效的完成系统和业务的运维工作,保障集群的高稳定性。

2.2 混部差异化资源视图

图片

混部首先要解决的一个问题是离线使用哪一部分资源。

在vivo混部系统中在线和离线看到的资源视图是不同的:

  • 在线可用资源为 整机资源

  • 离线可用资源为 整机资源减去 在线实际使用的资源

同时为了避免整机负载太高影响系统的稳定性,我们设置一个安全水位线,用于调节离线可用资源大小。

2.3 混部QoS等级

图片

为了保障混部系统的slo,我们将服务分为三个等级:高、中,低

不同等级的服务对物理资源如:CPU、内存 使用时有不同的优先级。高优先级服务支持绑定CPU模式,适用对延时非常敏感的在线服务。一般的在线服务可设置为中优先级。离线任务设置为低优先级,通过这样的等级划分,我们很好的实现在线对离线的资源压制和隔离,保障了在线服务质量。

2.4 混部核心组件架构

图片

我们所有的混部组件都是以插件方式独立运行,对原生K8s无侵入。我们实现了一个混部调度器,在线和离线统一使用这个调度器,避免了多调度器资源账本冲突的问题。

每台物理机上都会部署一个混部agent,它可以实时采集容器资源使用数据,并根据安全水位线对离线任务进行压制、驱逐等操作。

内核层面我们使用了龙蜥OS,它具备强大的资源隔离能力,可以帮助我们更好的隔离在线、离线资源使用,保障在线服务质量。

2.5 混部组件功能

图片

我们把混部组件分为管控组件和单机组件两大类。

管控组件主要负责调度和控制,根据vivo业务使用场景,我们对调度器做了一些增强,提供了numa感知、负载感知,热点打散,批量调度等能力。

混部控制器主要提供了一些配置管理能力:如资源画像统计、node slo配置、node扩展资源变更等。

2.6 混部可视化监控

图片

我们为混部建立一套完整的可视化监控体系。

针对在线服务我们提供了:容器资源使用指标,受离线干扰指标、业务混部收益指标等监控能力。

针对离线任务,我们提供了离线可用资源、任务异常状态等监控能力。

在平台层面上我们提供了节点、内核,核心组件的监控,通过这些监控可及时发现平台潜在的风险。

2.7 混部平台运维

图片

为了简化运维操作,提升运维效率,我们对混部集群搭建和节点扩缩容操作进行了白屏化改造,开发了资源池管理功能,简化了物理机接入流程,运维效率大幅提升。

在运维平台上运维人员可以快速调整混部隔离、水位线等参数,如果发现在线服务受到干扰,运维人员可以一键关闭混部,驱逐离线任务,保障在线服务质量。

2.8 问题与挑战

2.8.1 apiServer拆分

图片

通过混部产品能力的建设,我们很好的实现了容器混部能力,但是在实践中我们还是遇到一些新的挑战:相对于普通K8s集群,混部集群中运行着更多的容器,而且离线任务由于生命周期短,容器创建销毁更为频繁,这对K8s apiServer 产生了很大的压力。

所以我们拆分了apiServer ,离线任务使用独立的apiServer ,保障了集群apiServer 负载一直处于一个安全水平。

2.8.2 监控架构优化

图片

同样混部之后由于采集了更多的监控指标,导致Prometheus内存消耗过多,无法满足平台指标 采集需求。针对这个问题,我们优化了监控架构,将在线和离线监控组件分开部署,离线改用性能更好的vmagent,通过这个优化,监控组件内存消耗减少到原来的十分之一。

2.9 利用率提升

图片

混部初期虽然集群CPU利用率有所提升,但是还是没有达到我们的预期,主要原因有:

  • 一、部分低配置机器资源本身较少。

  • 二、Java 类应用堆会固定占用大量内存,导致可提供给离线使用内存资源不足。

针对这些问题,我们开发了定时调整安全水位线功能,在业务低峰期上调安全水位线,释放更多的资源给离线使用。通过一系列的优化手段,我们将其中一个混部集群的CPU利用率由13%提升到了25%左右,几乎翻倍,混部效果得到了有效的验证。

三、Spark on K8s 弹性调度实践

3.1 方案选型

图片

在大方向的技术选型上,我们选择了 Spark on K8s,在业内,也有一些公司采用了 YARN on K8s的方案。我们也对这两种方案进行过对比。

从业务适用性来说,YARN on K8s 是通用的,可以兼容Hive、Spark、Flink这些引擎,它不需要频繁创建Nodemanager pod,对K8s的压力比较小。这些都是它的优点,但另一方面,Nodemanager ESS服务是对磁盘有容量和读写性能要求的,混部机器磁盘一般难以满足。所以我们要支持不同引擎的remote shuffle service。

如果计算引擎有不同的版本,那么RSS也要支持不同版本,比如Spark2,Spark3。如果你有不同的引擎,不同的版本,很可能一种RSS还满足不了需求。另外Nodemanager需要根据K8s混部节点的剩余资源,动态调整可用的vcore和内存,所以还需要一个额外的组件来做这个事情,这需要较高的改造成本。在资源利用上,NM的资源粒度相对大,自身也会占用一些资源,存在一定的浪费。在资源紧张的情况下,Nodemanager作为整体被驱逐,会影响多个任务。这些是YARN on K8s的劣势。

作为对比,Spark on K8s 劣势有哪些?

首先这个特性在Spark 3.1以上版本才正式可用。Spark on K8s由于会频繁的创建、查询、销毁大量的executor pod,对K8s的调度能力以及master节点会造成比较大的压力。另一方面,它的优势在于只需要能支持spark3.X的RSS,这有较多的开源产品可选择。而且改造成本比较低,不需要额外的组件。资源粒度小,更有利于充分利用集群资源。在资源紧张时,会逐个pod进行驱逐,任务的稳定性会更高。

两方案各有优劣势,为什么我们选择了Spark on K8s?一方面因为Spark3.X是vivo当前及未来2~3年的主流离线引擎,另一方面vivo内部对K8s研发比较深入,能有力支持我们。基于以上原因,我们最终决定使用spark on K8s

3.2 三步走战略

图片

确定了方案选型,那在vivo我们是如何推进spark on K8s大规模的应用落地呢?回顾总结我们走过的路,可以大致归纳为三步走的战略。

  • 第一,是任务跑通跑顺的初期阶段

  • 第二,是任务跑稳、跑稳的中期阶段

  • 最后,是任务跑得智能的成熟阶段

接下来的内容,我们将对每个阶段展开细说。

3.2.1 任务跑通跑顺

图片

在任务跑通、跑顺的第一阶段,我们要解决的是怎么将任务提交K8s集群,同时要求易用性、便利性方面能够达到与on YARN 一致的用户体验。将我们最后采用的方案架构简化一下,就如同这张图所示。

首先,为了降低任务提交的复杂性、避免用户改造任务的成本。我们在任务调度管理平台做到了对原有Spark任务的兼容,通过vivo内部的容器开放API-这个代理层,我们不需要维护额外的K8s client环境,就可以轻松实现任务提交,提交后也能近实时获取任务的状态和日志信息。

另外一个关键点是,我们选用了Spark Operator作为Spark任务容器化的方案。Spark Operator是谷歌基于K8s Operator模式开发的一款的工具,用于通过声明式的方式向K8s集群提交Spark作业。

Spark Operator的方式还有其他优点:

  • Operator方式对K8s更友好,支持更灵活、更全面的配置项

  • 使用上更简单易用

  • 内置Metrics,有利于我们做集中管理

要达到阶段一的目标,让任务跑通、跑顺。我们主要克服了哪些关键问题和挑战

图片

第一个是日志查看,因为Spark Operator方式并没有提供已结束作业的日志查看方式,包括driver和executor日志。在Driver侧,我们通过定期请求容器开放API,能准实时地获取Driver Pod状态与日志。在Executor侧,我们参考了on yarn的方式,Executor Pod结束后,日志上传HDFS,与YARN日志聚合类似。

另一方面,我们也在Spark HistoryServer做了二次开发工作,增加了on K8s方式的日志查看接口。用户查看已完成的Executor日志时,不再请求JobHistory Server,而是请求Spark HistoryServer接口。在体验上做到了基本与yarn一致。

在混部K8s集群,我们也做了三方面能力的加强

  • 一是,确保分配能力能支持离线任务频繁建删pod的需求,在优化后我们离线Pod分配能力达到数百pod/秒。

  • 二是,在K8s侧提升了spark内部的Driver优先级,确保了在驱逐时Driver稳定性高于Executor。

  • 最后一个是,发现并修复了spark-operator的一个bug,这个bu是Operator在多副本部署时,slave副本webhook处理有一点概率出现pod 找不到的问题。

3.2.2 任务跑稳跑准

图片

在第二阶段,我们要保障的是任务跑稳,数据跑准,因此,我们有两个关键的举措

  • 大规模双跑,目的是确保Spark任务迁移到K8s集群后是兼容的,任务成功率有保障;任务执行时长是稳定的,不会明显变慢;数据是准确的,跟on YARN保持一致性。为此,我们需要对任务进行on YARN和on K8s两种模式下的双跑测试,我们分批次总共进行了7轮双跑,覆盖了2万+的线上正式任务。最终也取得了我们想要的结果:我们双跑最终达成的任务成功率超过了99.5%,绝大部分的任务在两种模式下的时长波动在25%以内,数据一致性是100%。

  • 混部集群的压力联调,目的是确保混部集群的承载容量能够支撑大规模的离线任务调度,通过模拟未来1年的任务量来给混部集群做压力测试,充分发现和检测K8s集群可能存在的性能问题。最终,通过我们多轮压测和问题解决,我们在单个K8s集群能够支撑150+同时运行的Spark任务,1万+同时在运行的Pod数量。

图片

第二阶段,我们主要面临三个方面的问题和挑战

首先是我们需要为Spark选择一个外部的shuffle服务,经过技术选型和比较,我们最终选择开源的celeborn作为我们的remote shuffle service组件。我们通过对机型和参数的测试调优,使celeborn的性能达到我们的预期需求。在大规模的应用场景中,我们还发现了会存在大任务会阻塞小任务,导致shufle read变慢的问题,我们对这种情况做了参数和代码上的优化,当前社区也针对shuffle read的问题有一些待优化的改进。另外celeborn进行了容器化部署,在提升自动化运维能力的同时,也可以为混部集群提供额外的计算资源。

其次,在任务稳定性方面,我们也解决了一系列的问题。

  1. 在双跑的时候,我们发现有不少任务在on K8s模式下很容易OOM,这是因为在on YARN模式下申请的container内存大小,不止是由Spark任务本身的内存参数决定,还会被YARN的资源粒度参数所影响。所以这块要做一些适配对标工作。

  2. 在任务量比较大的情况下,Spark operator的吞吐能力会遇到瓶颈,需要我们将并发worker数量、队列的相关参数调大。

  3. CoreDNS因为Spark任务频繁的域名解释请求,导致压力增大,甚至可能影响在线服务。这个可以通过访问ip而不是域名的方式来规避,比如namenode节点、driver和executor。

  4. 横向扩展namespace,这样可以避免单namespace的瓶颈,也防止etcd出现问题。

  5. 我们K8s apiserver的压力随着任务量增长压力也会逐渐增大,这会影响整个集群的稳定性。我们主要通过优化Spark driver list pod接口、使用hostnetwork方式两个优化手段,有效降低了apiserver的压力。

最后要说的是数据一致性,关键点是要做到行级记录的MD5校验,发现有不一致的Case,我们做到100%的分析覆盖。排除了因为时间戳随机函数等一些预期内的不一致,我们发现并修复两种case会偶发导致不一致的问题:

  • celeborn Bug导致不一致,具体可参考CELEBORN-383解决

  • Java版本不一致导致的问题

3.2.3 任务跑得智能

图片

第三阶段,我们需要解决的问题是让任务跑得智能,怎么定义智能,我想用三个词来概括弹性、健壮、业务需求。这是我们弹性调度的架构图,细节我就不讲了,这里我介绍下我们的调度系统重点支持的功能。

图片

在弹性方面,我们需要做到实时根据混部集群资源闲忙,智能提交至混部集群或者Hadoop集群。在前期我们K8s集群的资源相对Hadoop是小头,通过合理的水位线控制,防止大量任务同时调度到K8s导致饿死。

健壮,就是要保证任务的高可用。

我们建设的能力包括:

  • 任务双跑成功后再混部

  • 支持离线任务失败自动回滚到Hadoop集群执行

  • 支持用户自主决定任务是否可调度至K8s集群

  • 初期剔除重要核心任务、剔除不可重试任务

目的是在用户任务迁移时做到让用户无感。

在满足业务需求方面,我们支持优先调度本业务的离线任务, 优先满足业务部门的离线任务资源需求;支持只在指定时间段里调度离线任务,支持在出现异常情况下一键终止调度K8s。这些是为了确保在线服务的高可用性,免除在线业务的后顾之忧。

3.3 混部效果

图片

克服了三步走过程中的磕磕碰碰,我们终于可以将离线任务大规模混布到K8s混部集群了。但是我们很快发现,混部集群的整体利用率并没有达到我们的预期,主要有三方面的原因

  1. 初期的Spark任务不足,这个我们通过加快双跑,迁移低版本的Spark任务,迁移Hive SQL任务来解决。

  2. 在混部的时候,我们也观察到,离线任务的pod cpu利用率其实没那么高。比如我们申请一个核,通常只能利用0.6个核,存在浪费的情况。我们上线了CPU资源超分的能力,目前是静态的固定比例超分,通过这个措施,我们能将pod的实际cpu利用率打到80%以上。

  3. 另外就是混部集群中的机器配置不均,部分机器cpu资源充足,但是内存不够。我们通过在调度侧控制可调度任务的资源粒度,尽量调度对内存资源需求较小的任务。

通过我们在任务调度侧,以及之前甘青提到过的其他措施。混部集群利用率得到了进一步的提升。

图片

最后,我向大家同步下,当前我们达成的混部效果

我们目前可供调度的任务接近2万个,这些任务每天调度的次数已经超过了4万次。在凌晨的高峰期,我们通过混部,能为离线任务额外增加2万核、50TB内存的计算资源。这个收益是相当可观的,我们也希望在未来的2到3年,将可调度的任务规模提升到6万个,弹性资源能够为离线计算总资源贡献20%的份额。

通过继续深度推进在离线混部技术,我们期望能够为vivo增效降本工作持续地贡献力量。

以上就是本次分享的全部内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/710367.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第104讲:数据库分库分表的意义与实现策略(MyCat)

文章目录 1.分库分表的目的2.分库分表的拆分策略2.1.垂直拆分2.2.水平拆分 3.Mycat水平拆分的分片规则 1.分库分表的目的 互联网中的应用程序,随着公司的发展,应用系统的使用人数、数据量都再持续增长,数据库层面就会产生一定的瓶颈。 如果…

Transformer之Residuals Decoder

The Residuals 我们需要提到的编码器架构中的一个细节是,每个编码器中的每个子层(self-attention,,ffnn)周围都有一个残余连接,然后是 layer-normalization 步骤。 如果我们要可视化向量和与 self attention 相关的 layer-norm 运算&#x…

基于视觉识别的自动采摘机器人设计与实现

一、前言 1.1 项目介绍 【1】项目功能介绍 随着科技的进步和农业现代化的发展,农业生产效率与质量的提升成为重要的研究对象。其中,果蔬采摘环节在很大程度上影响着整个产业链的效益。传统的手工采摘方式不仅劳动强度大、效率低下,而且在劳…

图像处理基础——频域、时域

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。 一、什么是频域 时域 时域是信号在时间轴随时间变化的总体概括;频域是把时域波形的表达式做傅立叶等变化得到复频域的表达式,所画出的波形就是频谱图&a…

Docker技术概论(8):Docker Desktop原生图形化管理

Docker技术概论(8) Docker 原生图形化管理 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:…

字节序转换函数

目录 为什么要字节序转换?网络协议指定通讯字节序为大端字节序转换函数主机字节序转换为网络字节序hton1 (host to network l是length指长整型)htons (host to network s是short指短整型)两个函数的代码案例 网络字节序转主机字节序ntoh1ntohs 为什么要字节序转换&a…

【报名指南】2024年第九届数维杯数学建模挑战赛报名全流程图解

1.官方报名链接: 2024年第九届数维杯大学生数学建模挑战赛http://www.nmmcm.org.cn/match_detail/32 2.报名流程(电脑与手机报名操作流程一致) 参赛对象为在校专科生、本科生、研究生,每组参赛人数为1-3人(指导老师不…

【MySQL】数据查询——DQL基本数据库查询

目录 查询语法1. 查询表中所有的数据行和列,采用“*”符号2. 查询表中指定列的数据。3. 在查询中使用别名,使用“AS”关键字。4. 在查询中使用常量列:如果需要将一些常量的默认信息添加到输出结果中,以方便统计或计算。可以使用常…

Unity 预制体与变体

预制体作用: 更改预制体,则更改全部的以预制体复制出的模型。 生成预制体: 当你建立好了一个模型,从层级拖动到项目中即可生成预制体。 预制体复制模型: 将项目中的预制体拖动到层级中即可复制。或者选择物体复制粘贴。…

Jenkins自动化部署之流水线模式部署

文章目录 任务类型Pipeline流水线项目声明式的Pipeline脚本式Pipeline 示例脚本生成Tools配置示例 高级Pipeline Script from SCM 任务类型 在Jenkins中,有不同类型的任务(项目)适用于不同的构建需求。以下是一些常见的Jenkins任务类型&…

MYSQL03高级_新增用户、授予权限、授权底层表结构、角色理解

文章目录 ①. 登录服务器操作②. 用户的增删改③. 修改用户密码④. MySQL8密码管理⑤. 权限列表及原则⑥. 授予查看回收权限⑦. 底层权限表操作⑧. 角色的理解 ①. 登录服务器操作 ①. 启动MySQL服务后,可以通过mysql命令来登录MySQL服务器,命令如下: mysql –h hostname|hos…

32单片机基础:TIM输出比较

这个输出比较功能是非常重要的,它主要是用来输出PWM波形,PWM波形又是驱动电机的必要条件,所以你如果想用STM32做一些有电机的项目,比如智能车,机器人等。 IC: Input Capture 输入捕获 CC:Capture/Compare一般表示输入捕获和输出…

【学习心得】浏览器开发者工具中出现的VM开头的JS文件是什么?

一、现象描述 在Chrome的开发者工具中,你可能会看到一些以“VM”开头的JavaScript文件(如“VM111.js”)。 二、VM文件到底是什么? “VM”表示的是Virtual Machine(虚拟机),这些文件通常表示由浏…

网站文章被百度快速收录的工具

百度是中国最主要的搜索引擎之一,对于网站管理员来说,网站文章被百度快速收录是至关重要的,因为这直接影响着文章的曝光和网站的流量。然而,许多网站管理员都会问一个常见的问题:文章百度收录需要几天?在这…

C语言基础17 判断

断结构要求程序员指定一个或多个要评估或测试的条件,以及条件为真时要执行的语句(必需的)和条件为假时要执行的语句(可选的)。 C 语言把任何非零和非空的值假定为 true,把零或 null 假定为 false。 下面是…

MYSQL01高级_Linux版安装、各级别字符集、字符集与比较规则、SQL大小写规范

文章目录 ①. MySQL - linux版安装②. 字符集的相关操作③. 各级别的字符集④. 字符集与比较规则(了解)⑤. SQL大小写规范⑥. sql_mode的合理设置 ①. MySQL - linux版安装 ①. 进入mysql官网,找到安装文件 ②. 将抽取出来的文件放在linux下的opt下 MySQL Community Serv…

WebSocket介绍与应用

介绍 WebSocket 是基于TCP的一种的网络协议。它实现了浏览器与服务器全双工通信——浏览器和服务器只需要完成一次握手,两者之间就可以创建持久性的连接,并进行双向数据传输。 HTTP协议和WebSocket协议对比: HTTP是短连接WebSocket是长连接…

Vue3 + MybatisPlus实现批量删除功能

目录 一、后端 1.1 编写后端接口 1.2 编写service和其实现类 二、前端 2.1 组件加多选样式 2.2 实现多选调用的方法 2.3 编写批量删除的按钮 2.4 执行批量删除请求代码 一、后端 1.1 编写后端接口 PostMapping("/batchDelete") public CommonResult<Boo…

Python中简单正则获取百度新闻页面所有超链接示例

一、示例代码&#xff1a; import re import requestsheaders {"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/""85.0.4183.83 Safari/537.36"} resp requests.get(http://news.…

自动化构建平台(三)Linux搭建私有的docker镜像库之Harbor的安装和使用详解

文章目录 前言一、Harbor的安装第一步&#xff1a;安装docker第二步&#xff1a;安装docker-compose第三步&#xff1a;安装Harbor 二、Harbor登录三、Harbor项目管理第一步&#xff1a;创建项目第二步&#xff1a;推送镜像 四、Harbor权限控制五、Harbor自动清理多余的镜像手动…