【Prometheus】基于Altertmanager发送告警到多个接收方、监控各种服务、pushgateway

基于Altertmanager发送报警到多个接收方

  • 一、配置alertmanager-发送告警到qq邮箱
    • 1.1、告警流程
    • 1.2、告警设置
      • 【1】邮箱配置
      • 【2】告警规则配置
      • 【3】 部署prometheus
      • 【4】部署service
  • 二、配置alertmanager-发送告警到钉钉
  • 三、配置alertmanager-发送告警到企业微信
    • 3.1、注册企业微信
    • 3.2、修改alertmanager-cm.yaml
  • 四、Prometheus PromQL语法
    • 4.1、数据类型
      • 【1】瞬时向量选择
      • 【2】区间向量选择
      • 【3】偏移向量选择器
      • 【4】聚合操作符
      • 【5】函数
  • 五、Prometheus监控扩展
    • 5.1、promethues采集tomcat监控数据
    • 5.2、promethues采集redis监控数据
    • 5.3、Prometheus监控mysql
      • 【1】安装mysql、mariadb
      • 【2】登陆mysql为mysql_exporter创建账号并授权
      • 【3】创建mysql配置文件、运行时可免密码连接数据库
      • 【4】启动mysql_exporter客户端
      • 【5】修改prometheus-alertmanager-cfg.yaml文件
      • 【6】grafana导入mysql监控图表
    • 5.4、Prometheus监控Nginx
    • 5.5、prometheus监控mongodb
  • 六、Pushgateway
    • 6.1、简介
    • 6.2、优缺点
    • 6.3、实践
      • 【1】部署pushgateway
      • 【2】推送简单数据
      • 【3】推送复杂数据
      • 【4】删除某个组下某个实例的所有数据
      • 【5】删除某个组下的所有数据:
      • 【6】把数据上报到pushgateway

一、配置alertmanager-发送告警到qq邮箱

1.1、告警流程

1. Prometheus Server监控目标主机上暴露的http接口(这里假设接口A),通过Promethes配置的’scrape_interval’定义的时间间隔,定期采集目标主机上监控数据。

2. 当接口A不可用的时候,Server端会持续的尝试从接口中取数据,直到"scrape_timeout"时间后停止尝试。这时候把接口的状态变为“DOWN”。

3. Prometheus同时根据配置的"evaluation_interval"的时间间隔,定期(默认1min)的对Alert Rule进行评估;
当到达评估周期的时候,发现接口A为DOWN,即UP=0为真,激活Alert,进入“PENDING”状态,并记录当前active的时间;

4. 当下一个alert rule的评估周期到来的时候,发现UP=0继续为真,然后判断警报Active的时间是否已经超出rule里的‘for’ 持续时间,如果未超出,则进入下一个评估周期;如果时间超出,则alert的状态变为“FIRING”;同时调用Alertmanager接口,发送相关报警数据。

5. AlertManager收到报警数据后,会将警报信息进行分组,然后根据alertmanager配置的“group_wait”时间先进行等待。等wait时间过后再发送报警信息。

6. 属于同一个Alert Group的警报,在等待的过程中可能进入新的alert,如果之前的报警已经成功发出,那么间隔“group_interval”的时间间隔后再重新发送报警信息。比如配置的是邮件报警,那么同属一个group的报警信息会汇总在一个邮件里进行发送。

7. 如果Alert Group里的警报一直没发生变化并且已经成功发送,等待‘repeat_interval’时间间隔之后再重复发送相同的报警邮件;如果之前的警报没有成功发送,则相当于触发第6条条件,则需要等待group_interval时间间隔后重复发送。

1.2、告警设置

报警:指prometheus将监测到的异常事件发送给alertmanager
通知:alertmanager将报警信息发送到邮件、微信、钉钉等

【1】邮箱配置

邮箱设置:
在这里插入图片描述
开启的时候就会出现授权码,授权码只出现一次,要保存好。

邮箱配置

[root@master 3]# cat alertmanager-cm.yaml
kind: ConfigMap
apiVersion: v1
metadata:name: alertmanagernamespace: monitor-sa
data:alertmanager.yml: |-global:resolve_timeout: 1msmtp_smarthost: 'smtp.163.com:25' # 163邮箱的SMTP服务器地址+端口smtp_from: '15011572xxx@163.com'  # 这是指定从哪个邮箱发送报警 smtp_auth_username: '15011572xxx' # 发送邮箱的授权码smtp_auth_password: 'BGWHYUOSOOHWEUJM'  # 改成自己的smtp_require_tls: falseroute:  # 用于配置告警分发策略group_by: [alertname] # 采用哪个标签来作为分组依据group_wait: 10s		# 组告警等待时间。也就是告警产生后等待10s,如果有同组告警一起发出group_interval: 10s   # 上下两组发送告警的间隔时间repeat_interval: 10m  # 重复发送告警的时间,减少相同邮件的发送频率,默认是1hreceiver: default-receiver  # 定义谁来收告警receivers:- name: 'default-receiver'email_configs:- to: '1011776350@qq.com'send_resolved: true
[root@master 3]# k apply -f alertmanager-cm.yaml
configmap/alertmanager created
[root@master 3]# k get cm -n monitor-sa
NAME                DATA   AGE
alertmanager        1      25s

【2】告警规则配置

[root@master 3]# cat prometheus-alertmanager-cfg.yaml
kind: ConfigMap
apiVersion: v1
metadata:labels:app: prometheusname: prometheus-confignamespace: monitor-sa
data:prometheus.yml: |rule_files:- /etc/prometheus/rules.ymlalerting:alertmanagers:- static_configs:- targets: ["localhost:9093"]global:scrape_interval: 15sscrape_timeout: 10sevaluation_interval: 1mscrape_configs:- job_name: 'kubernetes-node'kubernetes_sd_configs:- role: noderelabel_configs:- source_labels: [__address__]regex: '(.*):10250'replacement: '${1}:9100'target_label: __address__action: replace- action: labelmapregex: __meta_kubernetes_node_label_(.+)- job_name: 'kubernetes-node-cadvisor'kubernetes_sd_configs:- role:  nodescheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- action: labelmapregex: __meta_kubernetes_node_label_(.+)- target_label: __address__replacement: kubernetes.default.svc:443- source_labels: [__meta_kubernetes_node_name]regex: (.+)target_label: __metrics_path__replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor- job_name: 'kubernetes-apiserver'kubernetes_sd_configs:- role: endpointsscheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]action: keepregex: default;kubernetes;https- job_name: 'kubernetes-service-endpoints'kubernetes_sd_configs:- role: endpointsrelabel_configs:- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]action: keepregex: true- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]action: replacetarget_label: __scheme__regex: (https?)- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]action: replacetarget_label: __metrics_path__regex: (.+)- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]action: replacetarget_label: __address__regex: ([^:]+)(?::\d+)?;(\d+)replacement: $1:$2- action: labelmapregex: __meta_kubernetes_service_label_(.+)- source_labels: [__meta_kubernetes_namespace]action: replacetarget_label: kubernetes_namespace- source_labels: [__meta_kubernetes_service_name]action: replacetarget_label: kubernetes_name- job_name: 'kubernetes-pods'kubernetes_sd_configs:- role: podrelabel_configs:- action: keepregex: truesource_labels:- __meta_kubernetes_pod_annotation_prometheus_io_scrape- action: replaceregex: (.+)source_labels:- __meta_kubernetes_pod_annotation_prometheus_io_pathtarget_label: __metrics_path__- action: replaceregex: ([^:]+)(?::\d+)?;(\d+)replacement: $1:$2source_labels:- __address__- __meta_kubernetes_pod_annotation_prometheus_io_porttarget_label: __address__- action: labelmapregex: __meta_kubernetes_pod_label_(.+)- action: replacesource_labels:- __meta_kubernetes_namespacetarget_label: kubernetes_namespace- action: replacesource_labels:- __meta_kubernetes_pod_nametarget_label: kubernetes_pod_name- job_name: 'kubernetes-etcd'scheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crtcert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crtkey_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.keyscrape_interval: 5sstatic_configs:- targets: ['10.32.1.147:2379']rules.yml: |groups:- name: examplerules:- alert: apiserver的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  apiserver的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: etcd的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  etcd的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: kube-state-metrics的cpu使用率大于80%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"value: "{{ $value }}%"threshold: "80%"- alert: kube-state-metrics的cpu使用率大于90%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"value: "{{ $value }}%"threshold: "90%"- alert: coredns的cpu使用率大于80%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"value: "{{ $value }}%"threshold: "80%"- alert: coredns的cpu使用率大于90%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"value: "{{ $value }}%"threshold: "90%"- alert: kube-proxy打开句柄数>600expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kube-proxy打开句柄数>1000expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-schedule打开句柄数>600expr: process_open_fds{job=~"kubernetes-schedule"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-schedule打开句柄数>1000expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-controller-manager打开句柄数>600expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-controller-manager打开句柄数>1000expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-apiserver打开句柄数>600expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-apiserver打开句柄数>1000expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-etcd打开句柄数>600expr: process_open_fds{job=~"kubernetes-etcd"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-etcd打开句柄数>1000expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: corednsexpr: process_open_fds{k8s_app=~"kube-dns"}  > 600for: 2slabels:severity: warnningannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"value: "{{ $value }}"- alert: corednsexpr: process_open_fds{k8s_app=~"kube-dns"}  > 1000for: 2slabels:severity: criticalannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"value: "{{ $value }}"- alert: kube-proxyexpr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: schedulerexpr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-controller-managerexpr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-apiserverexpr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-etcdexpr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kube-dnsexpr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: HttpRequestsAvgexpr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"value: "{{ $value }}"threshold: "1000"- alert: Pod_restartsexpr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0for: 2slabels:severity: warnningannotations:description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"value: "{{ $value }}"threshold: "0"- alert: Pod_waitingexpr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"value: "{{ $value }}"threshold: "1"- alert: Pod_terminatedexpr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"value: "{{ $value }}"threshold: "1"- alert: Etcd_leaderexpr: etcd_server_has_leader{job="kubernetes-etcd"} == 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"value: "{{ $value }}"threshold: "0"- alert: Etcd_leader_changesexpr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"value: "{{ $value }}"threshold: "0"- alert: Etcd_failedexpr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"value: "{{ $value }}"threshold: "0"- alert: Etcd_db_total_sizeexpr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"value: "{{ $value }}"threshold: "10G"- alert: Endpoint_readyexpr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"value: "{{ $value }}"threshold: "1"- name: 物理节点状态-监控告警rules:- alert: 物理节点cpu使用率expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90for: 2slabels:severity: ccriticalannotations:summary: "{{ $labels.instance }}cpu使用率过高"description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理"- alert: 物理节点内存使用率expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90for: 2slabels:severity: criticalannotations:summary: "{{ $labels.instance }}内存使用率过高"description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"- alert: InstanceDownexpr: up == 0for: 2slabels:severity: criticalannotations:summary: "{{ $labels.instance }}: 服务器宕机"description: "{{ $labels.instance }}: 服务器延时超过2分钟"- alert: 物理节点磁盘的IO性能expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"- alert: 入网流量带宽expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流入网络带宽过高!"description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"- alert: 出网流量带宽expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流出网络带宽过高!"description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"- alert: TCP会话expr: node_netstat_Tcp_CurrEstab > 1000for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"- alert: 磁盘容量expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
[root@master 3]# k apply -f  prometheus-alertmanager-cfg.yaml
[root@master 3]# k get cm -n monitor-sa
NAME                DATA   AGE
alertmanager        1      7h52m
kube-root-ca.crt    1      7d12h
prometheus-config   2      7d7h  # 已生成

【3】 部署prometheus

生成一个etcd-certs,这个在部署prometheus需要

[root@master 3]# kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key  --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
secret/etcd-certs created
[root@node01 package]# ctr -n=k8s.io images import  alertmanager.tar.gz
[root@master 3]# cat prometheus-alertmanager-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:name: prometheus-servernamespace: monitor-salabels:app: prometheus
spec:replicas: 1selector:matchLabels:app: prometheuscomponent: server#matchExpressions:#- {key: app, operator: In, values: [prometheus]}#- {key: component, operator: In, values: [server]}template:metadata:labels:app: prometheuscomponent: serverannotations:prometheus.io/scrape: 'false'spec:nodeName: node01  # 换成自己节点的名字serviceAccountName: monitorcontainers:- name: prometheusimage: prom/prometheus:v2.2.1imagePullPolicy: IfNotPresentcommand:- "/bin/prometheus"args:- "--config.file=/etc/prometheus/prometheus.yml"- "--storage.tsdb.path=/prometheus"- "--storage.tsdb.retention=24h"- "--web.enable-lifecycle"ports:- containerPort: 9090protocol: TCPvolumeMounts:- mountPath: /etc/prometheusname: prometheus-config- mountPath: /prometheus/name: prometheus-storage-volume- name: k8s-certsmountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/- name: alertmanagerimage: prom/alertmanager:v0.14.0imagePullPolicy: IfNotPresentargs:- "--config.file=/etc/alertmanager/alertmanager.yml"- "--log.level=debug"ports:- containerPort: 9093protocol: TCPname: alertmanagervolumeMounts:- name: alertmanager-configmountPath: /etc/alertmanager- name: alertmanager-storagemountPath: /alertmanager- name: localtimemountPath: /etc/localtimevolumes:- name: prometheus-configconfigMap:name: prometheus-config- name: prometheus-storage-volumehostPath:path: /datatype: Directory- name: k8s-certssecret:secretName: etcd-certs- name: alertmanager-configconfigMap:name: alertmanager- name: alertmanager-storagehostPath:path: /data/alertmanagertype: DirectoryOrCreate- name: localtimehostPath:path: /usr/share/zoneinfo/Asia/Shanghai

部署prometheus

[root@master 3]# kubectl apply -f prometheus-alertmanager-deploy.yaml
deployment.apps/prometheus-server configured
[root@master 3]# kubectl get pods -n monitor-sa -owide| grep prometheus
prometheus-server-cf55fc89b-mfk9z   2/2     Running   0          8h      10.244.196.151   node01   <none>           <none># 如果修改了这个配置文件,需要热加载一下
curl -X POST 10.244.196.151:9090/-/reload

【4】部署service

部署alertmanager的service,方便在浏览器访问

[root@master 3]# cat alertmanager-svc.yaml
---
apiVersion: v1
kind: Service
metadata:labels:name: prometheuskubernetes.io/cluster-service: 'true'name: alertmanagernamespace: monitor-sa
spec:ports:- name: alertmanagernodePort: 30066port: 9093protocol: TCPtargetPort: 9093selector:app: prometheussessionAffinity: Nonetype: NodePort
[root@master 3]# k apply -f alertmanager-svc.yaml
service/alertmanager created
[root@master 3]# kubectl get svc -n monitor-sa
NAME           TYPE       CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
alertmanager   NodePort   10.99.35.142     <none>        9093:30066/TCP   18s
prometheus     NodePort   10.104.116.119   <none>        9090:31000/TCP   7d9h
# 注意:上面可以看到prometheus的service在物理机映射的端口是31000,
# alertmanager的service在物理机映射的端口是30066

浏览器访问:http://10.32.1.147:30066/#/alerts
在这里插入图片描述
访问prometheus的web界面
点击status->targets,可看到如下
在这里插入图片描述
点击Alerts,可看到如下
在这里插入图片描述
此时查看自己的邮箱,是会有告警邮件产生的。

二、配置alertmanager-发送告警到钉钉

三、配置alertmanager-发送告警到企业微信

3.1、注册企业微信

登陆网址:
https://work.weixin.qq.com/
找到应用管理,创建应用
应用名字wechat
创建成功之后显示如下:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3.2、修改alertmanager-cm.yaml

kind: ConfigMap
apiVersion: v1
metadata:name: alertmanagernamespace: monitor-sa
data:alertmanager.yml: |-global:resolve_timeout: 1msmtp_smarthost: 'smtp.163.com:25'smtp_from: '18874165690@163.com'smtp_auth_username: '18874165690'smtp_auth_password: 'WZCYMKKQMZRYFICZ'smtp_require_tls: falseroute:group_by: [alertname]group_wait: 10sgroup_interval: 10srepeat_interval: 10sreceiver: prometheusreceivers:- name: 'prometheus'wechat_configs:- corp_id: wwb510050c4fd9ef9cto_user: '@all'agent_id: 1000003api_secret: p8qOyWIIHPMqzYn-_MsCa8MHYilUn7b5TUjb22xrokU

参数说明:

  • secret: 企业微信(“企业应用”–>“自定应用”[Prometheus]–> “Secret”)
  • corp_id:企业信息(“我的企业”—>“CorpID”[在底部])
  • agent_id: 企业微信(“企业应用”–>“自定应用”[Prometheus]–> “AgentId”)
  • wechat是自创建应用名称 #在这创建的应用名字是wechat,那么在配置route时,receiver也应该是Prometheus
  • to_user: ‘@all’ :发送报警到所有人
[root@master 3]# k delete -f alertmanager-cm.yaml
[root@master 3]# k apply -f alertmanager-cm.yaml
[root@master 3]# k delete -f prometheus-alertmanager-deploy.yaml
[root@master 3]# k apply -f prometheus-alertmanager-deploy.yaml
[root@master 3]# k get pods -n monitor-sa
NAME                                READY   STATUS    RESTARTS   AGE
node-exporter-tjlfj                 1/1     Running   0          8d
node-exporter-v8fc5                 1/1     Running   0          8d
node-exporter-zxsch                 1/1     Running   0          8d
prometheus-server-cf55fc89b-f2xnd   2/2     Running   0          17s

后续可查看企微是否收到告警

四、Prometheus PromQL语法

4.1、数据类型

PromQL 表达式计算出来的值有以下几种类型:

  • 瞬时向量 (Instant vector): 一组时序,每个时序只有一个采样值
  • 区间向量 (Range vector): 一组时序,每个时序包含一段时间内的多个采样值
  • 标量数据 (Scalar): 一个浮点数
  • 字符串 (String): 一个字符串,暂时未用

【1】瞬时向量选择

用来选择一组时序在某个采样点的采样值
最简单的情况就是制定一个度量指标,选择出所有属于该度量指标的时序的当前采样值。
比如下面的表达式:apiserver_request_total

在这里插入图片描述

可以通过在后面添加大括号保卫起来的足以标签键值对来对时序进行过滤。
比如下面的表达式筛选出了job为 kubernetes-apiservers,并且 resource为 pod的时序:
在这里插入图片描述

匹配标签值时可以是等于,也可以使用正则表达式。总共有下面几种匹配操作符:
=:完全相等
!=: 不相等
=~: 正则表达式匹配
!~: 正则表达式不匹配

下面的表达式筛选出了container是kube-scheduler或kube-proxy或kube-apiserver的时序数据
container_processes{container=~“kube-scheduler|kube-proxy|kube-apiserver”}
在这里插入图片描述

【2】区间向量选择

类似于瞬时向量选择器,不同的是它选择的是过去一段时间的采样值。
可以通过在瞬时向量选择器后面添加包含在[]里的时长来得到区间向量选择器。
比如下面的表达式选出了所有度量指标为 apiserver_request_total且resource是pod的时序在过去1 分钟的采样值。
在这里插入图片描述
这个不支持Graph,需要选择Console,才会看到采集的数据。

说明:时长的单位可以是下面几种之一:
s:seconds
m:minutes
h:hours
d:days
w:weeks
y:years

【3】偏移向量选择器

前面介绍的选择器默认都是以当前时间为基准时间,偏移修饰器用来调整基准时间,使其往前偏移一段时间。
偏移修饰器紧跟在选择器后面,使用 offset 来指定要偏移的量。比如下面的表达式选择度量名称为apiserver_request_total的所有时序在 5 分钟前的采样值。
apiserver_request_total{job=“kubernetes-apiserver”,resource=“pods”} offset 5m

下面的表达式选择apiserver_request_total 度量指标在 1 周前的这个时间点过去 5 分钟的采样值。
apiserver_request_total{job=“kubernetes-apiserver”,resource=“pods”} [5m] offset 1w
在这里插入图片描述

【4】聚合操作符

PromQL 的聚合操作符用来将向量里的元素聚合得更少。总共有下面这些聚合操作符:

sum:求和
min:最小值
max:最大值
avg:平均值
stddev:标准差
stdvar:方差
count:元素个数
count_values:等于某值的元素个数
bottomk:最小的 k 个元素
topk:最大的 k 个元素
quantile:分位数

  • 计算master节点所有容器总计内存
    sum(container_memory_usage_bytes{instance=~“master”})/1024/1024/1024
    在这里插入图片描述

  • 计算master节点最近1m所有容器cpu使用率
    sum (rate (container_cpu_usage_seconds_total{instance=~“xianchaomaster1”}[1m])) / sum (machine_cpu_cores{ instance =~“xianchaomaster1”}) * 100
    在这里插入图片描述

  • 计算最近1m所有容器cpu使用率
    sum (rate (container_cpu_usage_seconds_total{id!=“/”}[1m])) by (id)
    #把id会打印出来
    结果如下:
    在这里插入图片描述

【5】函数

Prometheus 内置了一些函数来辅助计算,下面介绍一些典型的。

abs():绝对值
sqrt():平方根
exp():指数计算
ln():自然对数
ceil():向上取整
floor():向下取整
round():四舍五入取整
delta():计算区间向量里每一个时序第一个和最后一个的差值
sort():排序

五、Prometheus监控扩展

5.1、promethues采集tomcat监控数据

https://note.youdao.com/ynoteshare/index.html?id=0ddfc17eaf7bac94ad4497d7f5356213&type=note

5.2、promethues采集redis监控数据

https://note.youdao.com/ynoteshare/index.html?id=b9f87092ce8859cd583967677ea332df&type=note

5.3、Prometheus监控mysql

【1】安装mysql、mariadb

yum install mysql -y 
yum install mariadb  -y
# 上传课件里面的压缩包mysqld_exporter-0.10.0.linux-amd64.tar.gz,然后解压
tar -xvf mysqld_exporter-0.10.0.linux-amd64.tar.gz
cp -ar mysqld_exporter /usr/local/bin/
chmod +x /usr/local/bin/mysqld_exporter

【2】登陆mysql为mysql_exporter创建账号并授权

-- 创建数据库用户
mysql> CREATE USER 'mysql_exporter'@'localhost' IDENTIFIED BY 'Abcdef123!.';
Query OK, 0 rows affected (0.03 sec)
-- 对mysql_exporter用户授权
mysql> GRANT PROCESS, REPLICATION CLIENT, SELECT ON *.* TO 'mysql_exporter'@'localhost';
Query OK, 0 rows affected (0.00 sec)
-- exit 退出mysql

【3】创建mysql配置文件、运行时可免密码连接数据库

[root@node01 ~]# cat my.cnf
[client]
user=mysql_exporter
password=Abcdef123!.

【4】启动mysql_exporter客户端

[root@node01 ~]# nohup mysqld_exporter --config.my-cnf=./my.cnf &
# mysqld_exporter的监听端口是9104
[root@node01 ~]# lsof -i:9104
COMMAND    PID USER   FD   TYPE    DEVICE SIZE/OFF NODE NAME
mysqld_ex 2216 root    3u  IPv6 723617678      0t0  TCP *:peerwire (LISTEN)

【5】修改prometheus-alertmanager-cfg.yaml文件

# 添加一个job name
- job_name: 'mysql'static_configs:- targets: ['10.32.1.148:9104']
[root@master 3]# vim prometheus-alertmanager-cfg.yaml
[root@master 3]# kubectl apply -f prometheus-alertmanager-cfg.yaml
configmap/prometheus-config configured
[root@master 3]# kubectl delete -f prometheus-alertmanager-deploy.yaml
deployment.apps "prometheus-server" deleted
[root@master 3]# kubectl apply -f prometheus-alertmanager-deploy.yaml
deployment.apps/prometheus-server created

访问prometheus查看:http://10.32.1.147:31000/targets

在这里插入图片描述

【6】grafana导入mysql监控图表

mysql-overview_rev5.json
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.4、Prometheus监控Nginx

https://note.youdao.com/ynoteshare/index.html?id=bea7b4b8f9a78db1679e1ac2ab747da5&type=note

5.5、prometheus监控mongodb

https://note.youdao.com/ynoteshare/index.html?id=39b54acb1fbc0199f966115ce9523bb6&type=note

六、Pushgateway

6.1、简介

Pushgateway是prometheus的一个组件,prometheus server默认是通过exporter主动获取数据(默认采取pull拉取数据),pushgateway则是通过被动方式推送数据到prometheus server,用户可以写一些自定义的监控脚本把需要监控的数据发送给pushgateway, 然后pushgateway再把数据发送给Prometheus server

6.2、优缺点

  • 优点
    Prometheus 默认采用定时pull 模式拉取targets数据,但是如果不在一个子网或者防火墙,prometheus就拉取不到targets数据,所以可以采用各个target往pushgateway上push数据,然后prometheus去pushgateway上定时pull数据
    在监控业务数据的时候,需要将不同数据汇总, 汇总之后的数据可以由pushgateway统一收集,然后由 Prometheus 统一拉取。
  • 缺点
    Prometheus拉取状态只针对 pushgateway, 不能对每个节点都有效;
    Pushgateway出现问题,整个采集到的数据都会出现问题
    监控下线,prometheus还会拉取到旧的监控数据,需要手动清理 pushgateway不要的数据。

6.3、实践

【1】部署pushgateway

安装pushgateway,在工作节点node01(10.32.1.148)操作
将课件中的安装包pushgateway.tar.gz上传到节点

[root@node01 package]# ll|grep push
-rw-r--r--  1 root      root         21320704 Feb 28 09:32 pushgateway.tar.gz
[root@node01 package]# docker load -i pushgateway.tar.gz
4d688dd2e2c4: Loading layer [==================================================>]  17.23MB/17.23MB
5447bffb5beb: Loading layer [==================================================>]  2.048kB/2.048kB
Loaded image: prom/pushgateway:latest
You have mail in /var/spool/mail/root
[root@node01 package]# lsof -i:9091
[root@node01 package]# docker run -d --name pushgateway -p 9091:9091 prom/pushgateway
ff87ff2c6f088a322f63e086883ca475602f13f30f209ded861c5530144b7a93

浏览器访问 http://10.32.1.148:9091/,出现如下ui界面
在这里插入图片描述
修改prometheus-alertmanager-cfg.yaml配置文件:

 - job_name: 'pushgateway'scrape_interval: 5sstatic_configs:- targets: ['10.32.1.148:9091']honor_labels: true
[root@master 3]# vim prometheus-alertmanager-cfg.yaml
[root@master 3]# k apply -f prometheus-alertmanager-cfg.yaml
configmap/prometheus-config configured
[root@master 3]# k delete -f prometheus-alertmanager-deploy.yaml
deployment.apps "prometheus-server" deleted
[root@master 3]# k apply -f prometheus-alertmanager-deploy.yaml
deployment.apps/prometheus-server created

在prometheus的targets列表可以看到pushgateway
在这里插入图片描述
可以查看pushgateway相关指标
在这里插入图片描述

【2】推送简单数据

推送指定的数据格式到pushgateway

# 向 {job="test_job"} 添加单条数据:
[root@node01 package]# echo " metric 3.6" | curl --data-binary @- http://10.32.1.148:9091/metrics/job/test_job
You have mail in /var/spool/mail/root# 注:--data-binary 表示发送二进制数据,注意:它是使用POST方式发送的!

刷新http://10.32.1.148:9091/

在这里插入图片描述

在这里插入图片描述

【3】推送复杂数据

[root@node01 package]# cat <<EOF | curl --data-binary @- http://10.32.1.148:9091/metrics/job/test_job/instance/test_instance
> #TYPE node_memory_usage gauge
> node_memory_usage 36
> # TYPE memory_total gauge
> node_memory_total 36000
> EOF
You have mail in /var/spool/mail/root

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

【4】删除某个组下某个实例的所有数据

【5】删除某个组下的所有数据:

【6】把数据上报到pushgateway

在被监控服务所在的机器配置数据上报,想要把10.32.1.147这个机器的内存数据上报到pushgateway,下面步骤需要在10.32.1.147操作

[root@master 3]# cat push.sh
node_memory_usages=$(free -m | grep Mem | awk '{print $3/$2*100}')
job_name="memory"
instance_name="10.32.1.149"
cat <<EOF | curl --data-binary @- http://10.32.1.148:9091/metrics/job/$job_name/instance/$instance_name
#TYPE node_memory_usages  gauge
node_memory_usages $node_memory_usages
EOF
[root@master 3]# sh push.sh

打开pushgateway web ui界面,可看到如下:
在这里插入图片描述

打开prometheus ui界面,可看到如下node_memory_usages的metrics指标
在这里插入图片描述
设置计划任务,定时上报数据

chmod +x push.sh
crontab -e
*/1 * * * * /usr/bin/bash  /root/CKA/model3/3/push.sh

查看指标数据,是有变化的

在这里插入图片描述

在这里插入图片描述

注意:

从上面配置可以看到,我们上传到pushgateway中的数据有job也有instance,而prometheus配置pushgateway这个job_name中也有job和instance,这个job和instance是指pushgateway实例本身,添加 honor_labels: true 参数, 可以避免promethues的targets列表中的job_name是pushgateway的 job 、instance 和上报到pushgateway数据的job和instance冲突。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/707972.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

量子算法入门—4.量子比特与量子门(1)

1.量子比特 经典比特和量子比特 经典比特只有0、1两种取值&#xff0c;非黑即白&#xff0c;有n位即 2 n 2^n 2n种可能量子比特使用0、1的量子态描述量子比特的状态&#xff0c;可以通过线性组合形成新的量子态&#xff0c;就像光谱可以调节成分 引入线代记法&#xff0c;0、…

ARK:《BIG IDEAS 2024》

Cathie Wood所带领的方舟投资&#xff08;ARK&#xff09;发布了年度重磅研究报告《BIG IDEAS 2024》&#xff0c;该报告指出人工智能、公共区块链、多组学测序、能源存储和机器人技术这五大板块的融合将带来全球经济活动的改变。 这五个创新平台正在融合并定义这个技术时代&am…

92. 递归实现指数型枚举 刷题笔记

思路 dfs 考虑选或者不选每个位置 用0表示未考虑 1表示选 2表示不选 用u表示搜索状态 u>n时 已经搜到底层了 需要输出当前方案 遍历 如果选了则输出 #include<iostream> using namespace std; int n; const int N16; int st[N]; void dfs(int u){ //u来记…

Git自动忽略dll文件的问题

检查了半天发现是sourcetreee的全局忽略文件导致&#xff0c; 从里面删除dll即可。 我是干脆直接删了全局忽略&#xff0c;太恶心了&#xff0c;如下&#xff1a; #ignore thumbnails created by windows Thumbs.db #Ignore files build by Visual Studio *.exe .vsconfig .s…

fastAdmin表格列表的功能

更多文章&#xff0c;请关注&#xff1a;fastAdmin后台功能详解 | 夜空中最亮的星 FastAdmin是一款基于ThinkPHP5Bootstrap的极速后台开发框架。优点见开发文档 介绍 - FastAdmin框架文档 - FastAdmin开发文档 在这里上传几张优秀的快速入门图: 一张图解析FastAdmin中的表格列…

Linux网络编程(四-TCP协议)

目录 一、TCP概念 二、TCP的首部格式 三、TCP可靠传输机制 3.1 确认应答机制 3.2 超时重传机制 3.3 连接管理 3.3.1 三次握手 3.3.2 四次挥手 3.4 流量控制 3.5 拥塞控制 四、TCP效率机制 4.1 滑动窗口 4.2 重发控制 4.3 延迟应答 4.4 捎带应答 五、TCP的…

大数据分布式计算工具Spark实战讲解(数据输入实战)

Python数据容器转RDD对象 PySpark支持通过SparkContext对象的parallelize成员方法&#xff0c;将&#xff1a; - list - tuple - set - dict - str 转换为PySpark的RDD对象 注意&#xff1a; •字符串会被拆分出1个个的字符&#xff0c;存入RDD对象 •字典仅有key会被存入…

Open Harmony开发之分布式账本

简介 Demo基于Open Harmony系统使用ETS语言进行编写&#xff0c;本Demo主要通过设备认证、分布式拉起、分布式数据管理等功能来实现。 应用效果 设备认证,获取同一个局域网内的设备ID&#xff0c;并拉起应用 添加数据并在另一台设备显示该数据 开发步骤 1.新建Openharmony…

安卓使用okhttpfinal下载文件,附带线程池下载使用

1.导入okhttp包 implementation cn.finalteam:okhttpfinal:2.0.7 2.单个下载 package com.example.downloading;import androidx.appcompat.app.AppCompatActivity;import android.os.Bundle; import android.util.Log; import android.view.View;import java.io.File;import c…

大数据分布式计算工具Spark数据计算实战讲解(map方法,flatmap方法,reducebykey方法)

数据计算 map方法 PySpark的数据计算&#xff0c;都是基于RDD对象来进行的&#xff0c;那么如何进行呢&#xff1f; 自然是依赖&#xff0c;RDD对象内置丰富的&#xff1a;成员方法&#xff08;算子&#xff09; 功能&#xff1a;map算子&#xff0c;是将rdd的数据一条条处…

Java 小项目开发日记 01(注册接口的开发)

Java 小项目开发日记 01&#xff08;注册接口的开发&#xff09; 1.项目需求 完成注册接口 2.项目目录 3. 配置文件&#xff08;pom.xml&#xff09; <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-insta…

NWatch-Alarm闹钟功能实现

文章目录 W25Q64初始化SPI初始化W25Q初始化 AlARM模块初始化AlARM模块绘制Draw函数AlARM的更新函数AlARM中最重要的函数 W25Q64初始化 W25Q64用来存储用户设置的闹钟值&#xff0c;开机的时候自动读取闹钟记录。 SPI初始化 使用CubeMx自动配置。 #define SPI1CS_ON HAL_GP…

3d模型导出简单线条的步骤---模大狮模型网

导出简单线条的3D模型通常涉及以下步骤&#xff1a; 创建线条模型&#xff1a;首先&#xff0c;在您的3D建模软件中创建或导入包含线条的模型。这可以是简单的线框模型&#xff0c;也可以是由线条构成的复杂形状。确保您的模型中只包含您希望导出的线条部分。 选择导出格式&am…

Python的自然语言处理库NLTK介绍

NLTK&#xff08;Natural Language Toolkit&#xff09;简介 NLTK是Python中一个领先的自然语言处理&#xff08;NLP&#xff09;库&#xff0c;它提供了文本处理的基础设施&#xff0c;包括分词&#xff08;tokenization&#xff09;、词性标注&#xff08;part-of-speech tag…

yolov5v7v8目标检测增加计数功能--免费源码

在yolo系列中&#xff0c;很多网友都反馈过想要在目标检测的图片上&#xff0c;显示计数功能。其实官方已经实现了这个功能&#xff0c;只不过没有把相关的参数写到图片上。所以微智启软件工作室出一篇教程&#xff0c;教大家如何把计数的参数打印到图片上。 一、yolov5目标检测…

前端Ajax获取当前外网IP地址并通过腾讯接口解析地理位置

目录 一、获取访问端IP地址 二、可用的IP获取接口 1、韩小韩IP获取接口&#xff1a; 2、ipify API 附3、失败的太平洋接口 三、腾讯位置服务-IP位置查询接口 一、获取访问端IP地址 原计划使用后端HttpServletRequest 获取访问端的IP地址&#xff0c;但在nginx和堡垒机等阻…

峟思科普小(1)型土石坝安全监测设备的基本配置与策略

土石坝&#xff0c;作为水利工程中的重要组成部分&#xff0c;其安全性能直接关系到下游人民的生命财产安全。为了确保土石坝的安全运行&#xff0c;必须对其进行科学有效的安全监测。本文将详细阐述小(1)型土石坝安全监测设备的基本配置与策略。 首先&#xff0c;对于存在渗漏…

JVM运行时数据区——运行时数据区及线程概述

文章目录 1、运行时数据区概述2、线程3、小结 内存是非常重要的系统资源&#xff0c;是硬盘和CPU的中间仓库及桥梁&#xff0c;承载着操作系统和应用程序的实时运行。JVM在程序执行期间把它所管理的内存分为若干个不同的数据区域。这些不同的数据区域可以分为两种类型&#xff…

“智农”-农业一体化管控平台

大棚可视化|设施农业可视化|农业元宇宙|农业数字孪生|大棚物联网|大棚数字孪生|农业一体化管控平台|智慧农业可视化|智农|农业物联网可视化|农业物联网数字孪生|智慧农业|大棚三维可视化|智慧大棚可视化|智慧大棚|农业智慧园区|数字农业|数字大棚|农业大脑|智慧牧业数字孪生|智…

【饮食】如何有效的补充维生素,矿物质?学习笔记(附膳食营养素参考摄入量DRIs)

程序员养生指南之 【饮食】如何有效的补充维生素&#xff0c;矿物质&#xff1f;学习笔记&#xff08;附膳食营养素参考摄入量DRIs&#xff09; 文章目录 一、维生素补充1、需要补充维生素的情况2、食补&#xff1a;缺啥补啥3、补充剂&#xff08;无脑吃&#xff09; 二、膳食营…