【C++私房菜】序列式容器的迭代器失效问题

目录

一、list的迭代器失效

二、vector的迭代器失效

1、空间缩小操作

2、空间扩大操作

三、总结


在C++中,当对容器进行插入或删除操作时,可能会导致迭代器失效的问题。所谓迭代器失效指的是,原先指向容器中某个元素的迭代器,在容器发生结构性变化(比如插入、删除元素)后,可能不再指向之前预期的位置,甚至变得无效,不能再安全地使用。

迭代器失效通常会导致程序出现未定义行为,比如访问无效内存地址、产生崩溃等问题。这是因为在容器发生结构性变化时,迭代器所持有的指针或引用可能已经不再有效,但程序仍然试图通过这些失效的迭代器来访问容器中的内容,从而导致错误。

本文别以list和vector为例,给出代码示例并分析迭代器失效的情况。


一、list的迭代器失效

此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。下面我们来了解一下listerase函数:

该函数用于从list容器中删除单个元素或者一个范围内的元素。删除元素会导致容器大小减少,并且被销毁。与其他标准序列容器不同,listforward_list对象专门设计用于在任何位置高效地插入和删除元素,即使是在序列的中间位置。参数包括position(指向要从list中删除的单个元素的迭代器),以及[first, last)(指定要删除的范围的迭代器,包括first指向的元素但不包括last指向的元素)。返回值是一个迭代器,指向函数调用erase的最后一个元素之后的元素。如果操作erase了序列中的最后一个元素,则返回容器的末尾位置。迭代器类型iterator是一个双向迭代器类型,用于指向元素。

  1. list的迭代器失效问题

先看一个正常使用迭代器的例子:

 #include <iostream>#include <list>​int main() {std::list<int> myList = {1, 2, 3, 4, 5};auto it = myList.begin();// 在迭代器指向位置2之后插入一个元素++it; // 移动到位置2myList.insert(it, 10);​for (auto it = myList.begin(); it != myList.end(); ++it) {std::cout << *it << " ";}std::cout << std::endl;//1 10 2 3 4 5 return 0;}

在上面的代码中,我们在list中插入元素时,使用了insert方法来在迭代器指向的位置后面插入一个新的元素。这样做是安全的,因为insert方法会返回一个指向新插入元素的迭代器,原先的迭代器仍然有效。

接下来,再看一个list的迭代器失效问题:

 #include <iostream>#include <list>​int main() {std::list<int> myList = {1, 2, 3, 4, 5};auto it = myList.begin();​// 删除迭代器指向的位置2处的元素++it; // 移动到位置2myList.erase(it);//cout << *it;  for (auto it = myList.begin(); it != myList.end(); ++it) {std::cout << *it << " ";}std::cout << std::endl;​return 0;}

在这个例子中,我们删除了迭代器指向的位置2处的元素。此时,原先指向位置2的迭代器已经失效,应该避免继续使用它。即erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值。

如果我们在 myList.erase(it);后输入 cout << *it;,在vs下会报如下错误:

这个错误信息表明程序中出现了尝试对值初始化的list迭代器进行解引用的情况。当你试图对指向列表中无效元素的迭代器进行解引用时,会导致未定义的行为,并可能引发断言失败。

在调用 erase 函数之后,被删除元素的迭代器会失效,因此不能再安全地对它进行解引用操作。在这种情况下,尝试输出 *it 会导致错误,因为 it 已经不再指向有效的元素了。

要避免这个问题,我们可以在调用 erase 函数之后,更新你的迭代器,使其指向正确的位置,或者使用 it = myList.erase(it); 来获取指向下一个有效元素的迭代器。

我们要避免这个问题,应该始终在对迭代器进行解引用操作之前检查它是否有效。你可以将迭代器与 list.end() 进行比较,以确定它是否指向列表的末尾,然后再尝试访问它所指向的元素。


二、vector的迭代器失效

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的 空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃((即如果继续使用已经失效的迭代器, 程序可能会崩溃)。vector导致迭代器失效的情景是引起其底层空间改变的函数或操作。

在C++的STL中,vector容器可以动态地增长和收缩,以适应元素数量的变化。当向vector容器中插入元素时,如果元素数量超过了当前容器的大小,vector会进行空间扩展操作;而当从vector容器中删除元素时,如果元素数量变少到一定程度,vector可能会进行空间收缩操作。

我们从两个方面来谈:

1、空间缩小操作

当使用pop_back()函数删除元素,且元素数量减少到一定程度以下时,vector可能会执行空间收缩操作。具体的收缩条件和实现细节因编译器和STL库的不同而有所差异。一般来说,vector并不会在每次删除元素后立即收缩内存空间,而是在适当的时机进行调整以提高性能。

使用erase()函数删除元素,同样可能触发空间收缩操作。

下面我们来了解一下vectorerase函数,我们仅使用erase函数来描述空间缩小的情况:

该函数用于从vector中删除单个元素或者一个范围内的元素。删除元素会导致容器大小减少,并且被销毁。由于vector使用数组作为其底层存储,因此在除了末尾位置之外的位置上擦除元素会导致容器重新定位被擦除段之后的所有元素到它们的新位置。与其他类型的序列容器(如listforward_list)相比,这通常是一种低效的操作。参数包括position(指向要从vector中删除的单个元素的迭代器)和[first, last)(指定要删除的范围的迭代器,包括first指向的元素但不包括last指向的元素)。返回值是一个迭代器,指向函数调用erase的最后一个元素之后的新位置。如果操作erase了序列中的最后一个元素,则返回容器的末尾位置。

 #include <iostream>#include <vector>​int main() {std::vector<int> myVector = {1, 2, 3, 4, 5};auto it = myVector.begin();​// 删除迭代器指向的位置2处的元素it = it + 2; // 移动到位置2myVector.erase(it);​for (auto it = myVector.begin(); it != myVector.end(); ++it) {std::cout << *it << " ";}std::cout << std::endl;​return 0;}

在这个例子中,我们删除了迭代器指向的位置2处的元素。与list类似,删除操作后原先的迭代器已经失效,应该避免继续使用它。

再例如如下案例:

 #include <iostream>#include <vector>using namespace std;int main(){vector<int> v{ 1, 2, 3, 4 };auto pos = v.begin();while (pos != v.end()){if (*pos % 2 == 0)v.erase(pos);++pos;}return 0;}

erase删除pos位置元素后,pos位置之后的元素会往前移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是 没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。vs下直接报错:

根据上面的内容,我们应在删除元素后,对迭代器进行赋值,使操作合法化:

 #include <iostream>#include <vector>using namespace std;int main(){vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)it = v.erase(it);else ++it;}return 0;}

2、空间扩大操作

当使用push_back()函数向vector末尾添加元素,并且当前元素数量已经达到了vector的容量上限时,vector会执行空间扩大操作。通常情况下,vector会重新分配更大的内存空间,将原有元素拷贝到新的内存空间中,并释放原来的内存空间。

使用insert()函数在任意位置插入元素,如果导致vector超出容量上限,也会触发空间扩大操作。

下面我们来了解一下vectorerase函数,我们仅使用erase函数来描述空间缩小的情况:

 #include <iostream>#include <vector>int main() {std::vector<int> myVector = {1, 2, 3, 4, 5};auto it = myVector.begin();// 在迭代器指向位置2之后插入一个元素it = it + 2; // 移动到位置2myVector.insert(it, 10);​for (auto it = myVector.begin(); it != myVector.end(); ++it) {std::cout << *it << " ";}std::cout << std::endl;return 0;}

我们在vector中插入元素时,使用了insert方法并通过迭代器移动到指定位置。以上操作可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉, 而在打印时,如cout << *it;it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的 空间,而引起代码运行时崩溃。

与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效。本文不再赘述,请读者结合vector理解。

需要注意的是,不同的编译器有不同的处理方式,Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对。或者erase删除任意位置代码后,Linux下迭代器并没有失效,因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的。


三、总结

因此,在实际编程中,当对listvector以及string 进行插入或删除操作时,需要格外小心,避免在迭代器失效的情况下继续使用迭代器。如果需要在循环中对容器进行插入或删除操作,可以考虑使用迭代器的insert和erase方法,并注意更新迭代器的位置,以避免迭代器失效问题。

一句话就能总结解决迭代器失效问题:在使用前,对迭代器重新赋值即可。

为了避免迭代器失效问题,通常建议在对容器进行插入或删除操作时,谨慎处理迭代器的使用:

  • 在循环中进行插入或删除操作时,可以考虑使用迭代器的insert和erase方法,这些方法会返回一个新的迭代器,避免原迭代器失效。

  • 插入或删除元素后,及时更新迭代器的位置,确保迭代器指向的是正确的元素。

  • 避免在迭代器失效的情况下继续使用迭代器。

总之,迭代器失效是指迭代器指向的位置在容器结构发生变化后不再有效,因此在对容器进行修改操作时,需要特别注意迭代器的使用,以避免出现迭代器失效导致的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/707587.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Retrofit核心原理

Retrofit是一个类型安全的HTTP客户端库&#xff0c;广泛用于Android和Java应用中&#xff0c;用于简化网络请求和响应的处理。本文将深入探讨Retrofit的核心原理&#xff0c;帮助开发者理解其背后的工作机制。 Retrofit简介 Retrofit是Square公司开发的一个开源库&#xff0c…

MWC 2024丨美格智能推出5G RedCap系列FWA解决方案,开启5G轻量化新天地

2月27日&#xff0c;在MWC 2024世界移动通信大会上&#xff0c;美格智能正式推出5G RedCap系列FWA解决方案。此系列解决方案具有低功耗、低成本等优势&#xff0c;可以显著降低5G应用复杂度&#xff0c;快速实现5G网络接入&#xff0c;提升FWA部署的经济效益。 RedCap技术带来了…

pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集

pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集 一、算法原理二、代码三、结果1.sor统计滤波2.Ransac内点分割平面3.Ransac外点分割平面 四、相关数据 一、算法原理 1、Ransac介绍 RANSAC(RAndom SAmple Consensus,随机采样一致)算法是从一组含有“外点”(outlier…

Flink CDC 提取记录变更时间作为事件时间和 Hudi 表的 precombine.field 以及1970-01-01 取值问题

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…

如何使用ArcGIS Pro为栅格图添加坐标信息

在某些时候&#xff0c;我们从网上获取的资源是一张普通的栅格图&#xff0c;没有任何的坐标信息&#xff0c;如果想要和带坐标信息的数据一起使用就需要先添加坐标信息&#xff0c;在GIS上&#xff0c;我们把这个过程叫做地理配准&#xff0c;这里为大家介绍一下地理配准的方法…

雾锁王国Enshrouded服务器CPU内存配置怎么选择?

雾锁王国/Enshrouded服务器CPU内存配置如何选择&#xff1f;阿里云服务器网aliyunfuwuqi.com建议选择8核32G配置&#xff0c;支持4人玩家畅玩&#xff0c;自带10M公网带宽&#xff0c;1个月90元&#xff0c;3个月271元&#xff0c;幻兽帕鲁服务器申请页面 https://t.aliyun.com…

通过shell编写内存监视的脚本来介绍一些基本shell脚本操作

目录 知识概览 总体脚本编写 date awk grep bc 知识概览 总体脚本编写 #!/bin/bash#定义日志的文件名和日期 cdate$(date %Y%m%d%H%M%S) logfile"/tmp/memlog_{$0}.log"#拿到ip ip_addr$(ip add|grep "ens33$"|awk {print $2})#总内存和使用的内存 m…

如何使用Fastapi上传文件?先从请求体数据讲起

文章目录 1、请求体数据2、form表单数据3、小文件上传1.单文件上传2.多文件上传 4、大文件上传1.单文件上传2.多文件上传 1、请求体数据 前面我们讲到&#xff0c;get请求中&#xff0c;我们将请求数据放在url中&#xff0c;其实是非常不安全的&#xff0c;我们更愿意将请求数…

第三百七十二回

文章目录 1. 概念介绍2. 实现方法2.1 maskFilter2.2 shader 3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 我们在上一章回中介绍了"两种阴影效果"相关的内容&#xff0c;本章回中将介绍如何绘制阴影效果.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概…

java多线程并发实战,java高并发场景面试题

阶段一&#xff1a;筑基 Java基础掌握不牢&#xff0c;对于一个开发人员来说无疑是非常致命的。学习任何一个技术知识无疑不是从基础开始&#xff1b;在面试的时候&#xff0c;面试官无疑不是从基础开始拷问。 内容包括&#xff1a;Java概述、Java基本语法、Java 执行控制流程、…

html5盒子模型

1.边框的常用属性 border-color 属性 说明 示例 border-top-color 上边框颜色 border-top-color:#369; border-right-color 右边框颜色 border-right-color:#369; border-bottom-color 下边框颜色 border-bottom-color:#fae45b; border-left-color 左边框颜色…

java springmvc/springboot 项目通过HttpServletRequest对象获取请求体body工具类

请求 测试接口 获取到的 获取到打印出的json字符串里有空格这些&#xff0c;在json解析的时候正常解析为json对象了。 工具类代码 import lombok.extern.slf4j.Slf4j; import org.springframework.web.context.request.RequestContextHolder; import org.springframework.we…

pikachu之xss获取键盘记录

前备知识 跨域 跨域&#xff08;Cross-Origin&#xff09;是指在互联网中&#xff0c;浏览器为了保护用户信息安全而实施的一种安全策略——同源策略&#xff08;Same-Origin Policy&#xff09;&#xff0c;即浏览器禁止一个域上的文档或者脚本&#xff08;如通过JavaScript发…

从零开始学习Netty - 学习笔记 -Netty入门-ChannelFuture

5.2.2.Channel Channel 的基本概念 在 Netty 中&#xff0c;Channel 是表示网络传输的开放连接的抽象。它提供了对不同种类网络传输的统一视图&#xff0c;比如 TCP 和 UDP。 Channel 的生命周期 Channel 的生命周期包括创建、激活、连接、读取、写入和关闭等阶段。Netty 中…

QT C++实战:实现用户登录页面及多个界面跳转

主要思路 一个登录界面&#xff0c;以管理员Or普通用户登录管理员&#xff1a;一个管理员的操作界面&#xff0c;可以把数据录入到数据库中。有返回登陆按钮&#xff0c;可以选择重新登陆&#xff08;管理员Or普通用户普通用户&#xff1a;一个主界面&#xff0c;负责展示视频…

vue组件中data为什么必须是一个函数

查看本专栏目录 关于作者 还是大剑师兰特&#xff1a;曾是美国某知名大学计算机专业研究生&#xff0c;现为航空航海领域高级前端工程师&#xff1b;CSDN知名博主&#xff0c;GIS领域优质创作者&#xff0c;深耕openlayers、leaflet、mapbox、cesium&#xff0c;canvas&#x…

Spring与SpringBoot入门

Spring入门 要使用Spring最起码需要引入两个依赖: <!-- Spring Core&#xff08;核心&#xff09; --><dependency><groupId>org.springframework</groupId><artifactId>spring-core</artifactId><version>5.3.20</version>…

密码学系列(四)——对称密码2

一、RC4 RC4&#xff08;Rivest Cipher 4&#xff09;是一种对称流密码算法&#xff0c;由Ron Rivest于1987年设计。它以其简单性和高速性而闻名&#xff0c;并广泛应用于网络通信和安全协议中。下面是对RC4的详细介绍&#xff1a; 密钥长度&#xff1a; RC4的密钥长度可变&am…

GPT 的基础 - T(Transformer)

我们知道GPT的含义是&#xff1a; Generative - 生成下一个词 Pre-trained - 文本预训练 Transformer - 基于Transformer架构 我们看到Transformer模型是GPT的基础&#xff0c;这篇博客梳理了一下Transformer的知识点。 BERT: 用于语言理解。&#xff08;Transformer的Encoder…

九州金榜|父亲在教育中的作用及重要性

随着社会进步&#xff0c;对比以前教育&#xff0c;现在父亲在教育中的作用越来越明显&#xff0c;孩子的教育离不开父亲&#xff0c;父亲在孩子教育中有什么作用&#xff1f;重要性又是什么呢&#xff1f;下面九州金榜家庭教育就带大家一起分析一下作为父亲&#xff0c;在孩子…