索引-索引结构
- 1. 概述
- 2. 二叉树
- 3. B-Tree
- 4. B+Tree
- 5. Hash
1. 概述
MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:
上述是MySQL中所支持的所有的索引结构,下面展示不同的存储引擎对于索引结构的支持情况。
注意: 我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。
2. 二叉树
假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:
但是如果我们插入的数据是顺序插入的,就会形成一个单向链表,结构如下:
所以,如果选择二叉树作为索引结构,会存在以下缺点:
- 顺序插入时,会形成一个链表,查询性能大大降低。
- 大数据量情况下,层级较深,检索速度慢。
此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数
据,最终形成的数据结构也是一颗平衡的二叉树,结构如下:
但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:
- 大数据量情况下,层级较深,检索速度慢。、
所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree。
3. B-Tree
B-Tree,B树是一种多叉路平衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5个指针:
树的度数指的是一个节点的子节点个数。
特点:
5阶的B树,每一个节点最多存储4个key,对应5个指针。
一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
在B树中,非叶子节点和叶子节点都会存放数据。
4. B+Tree
B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一下其结构示意图:
我们可以看到两部分:
绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。
B+Tree 与 B-Tree相比,主要有以下三点区别:
所有的数据都会出现在叶子节点。
叶子节点形成一个单向链表。
非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。
上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的B+Tree。
MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。
5. Hash
MySQL中除了支持B+Tree索引,还支持一种索引类型—Hash索引。
1). 结构
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
2). 特点
A. Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,…)
B. 无法利用索引完成排序操作
C. 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索引
3). 存储引擎支持
在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。
思考题: 为什么InnoDB存储引擎选择使用B+tree索引结构?
- 相对于二叉树,层级更少,搜索效率高;
- 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低;
- 相对Hash索引,B+tree支持范围匹配及排序操作;