挑战杯 基于大数据的时间序列股价预测分析与可视化 - lstm

文章目录

  • 1 前言
  • 2 时间序列的由来
    • 2.1 四种模型的名称:
  • 3 数据预览
  • 4 理论公式
    • 4.1 协方差
    • 4.2 相关系数
    • 4.3 scikit-learn计算相关性
  • 5 金融数据的时序分析
    • 5.1 数据概况
    • 5.2 序列变化情况计算
  • 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 大数据时间序列股价预测分析系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 时间序列的由来

提到时间序列分析技术,就不得不说到其中的AR/MA/ARMA/ARIMA分析模型。这四种分析方法的共同特点都是跳出变动成分的分析角度,从时间序列本身出发,力求得出前期数据与后期数据的量化关系,从而建立前期数据为自变量,后期数据为因变量的模型,达到预测的目的。来个通俗的比喻,大前天的你、前天的你、昨天的你造就了今天的你。

2.1 四种模型的名称:

  • AR模型:自回归模型(Auto Regressive model);
  • MA模型:移动平均模型(Moving Average model);
  • ARMA:自回归移动平均模型(Auto Regressive and Moving Average model);
  • ARIMA模型:差分自回归移动平均模型。
  • AR模型:

如果某个时间序列的任意数值可以表示成下面的回归方程,那么该时间序列服从p阶的自回归过程,可以表示为AR§:

在这里插入图片描述
AR模型利用前期数值与后期数值的相关关系(自相关),建立包含前期数值和后期数值的回归方程,达到预测的目的,因此成为自回归过程。这里需要解释白噪声,白噪声可以理解成时间序列数值的随机波动,这些随机波动的总和会等于0,例如,某饼干自动化生产线,要求每包饼干为500克,但是生产出来的饼干产品由于随机因素的影响,不可能精确的等于500克,而是会在500克上下波动,这些波动的总和将会等于互相抵消等于0。

3 数据预览


import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

#准备两个数组
list1 = [6,4,8]
list2 = [8,6,10]#分别将list1,list2转为Series数组
list1_series = pd.Series(list1) 
print(list1_series)
list2_series = pd.Series(list2) 
print(list2_series)#将两个Series转为DataFrame,对应列名分别为A和B
frame = { 'Col A': list1_series, 'Col B': list2_series } 
result = pd.DataFrame(frame)result.plot()
plt.show()

在这里插入图片描述

4 理论公式

4.1 协方差

首先看下协方差的公式:

在这里插入图片描述

在这里插入图片描述

4.2 相关系数

计算出Cov后,就可以计算相关系数了,值在-1到1之间,越接近1,说明正相关性越大;越接近-1,则负相关性越大,0为无相关性
公式如下:

在这里插入图片描述

4.3 scikit-learn计算相关性

在这里插入图片描述


#各特征间关系的矩阵图
sns.pairplot(iris, hue=‘species’, size=3, aspect=1)

在这里插入图片描述

Andrews Curves 是一种通过将每个观察映射到函数来可视化多维数据的方法。
使用 Andrews Curves 将每个多变量观测值转换为曲线并表示傅立叶级数的系数,这对于检测时间序列数据中的异常值很有用。


plt.subplots(figsize = (10,8))
pd.plotting.andrews_curves(iris, ‘species’, colormap=‘cool’)

在这里插入图片描述
这里以经典的鸢尾花数据集为例

setosa、versicolor、virginica代表了三个品种的鸢尾花。可以看出各个特征间有交集,也有一定的分别规律。


#最后,通过热图找出数据集中不同特征之间的相关性,高正值或负值表明特征具有高度相关性:

fig=plt.gcf()
fig.set_size_inches(10,6)
fig=sns.heatmap(iris.corr(), annot=True, cmap='GnBu', linewidths=1, linecolor='k', \
square=True, mask=False, vmin=-1, vmax=1, \
cbar_kws={"orientation": "vertical"}, cbar=True)

在这里插入图片描述

5 金融数据的时序分析

主要介绍:时间序列变化情况计算、时间序列重采样以及窗口函数

5.1 数据概况


import pandas as pd

tm = pd.read_csv('/home/kesci/input/gupiao_us9955/Close.csv')
tm.head()

在这里插入图片描述

数据中各个指标含义:

  • AAPL.O | Apple Stock
  • MSFT.O | Microsoft Stock
  • INTC.O | Intel Stock
  • AMZN.O | Amazon Stock
  • GS.N | Goldman Sachs Stock
  • SPY | SPDR S&P; 500 ETF Trust
  • .SPX | S&P; 500 Index
  • .VIX | VIX Volatility Index
  • EUR= | EUR/USD Exchange Rate
  • XAU= | Gold Price
  • GDX | VanEck Vectors Gold Miners ETF
  • GLD | SPDR Gold Trust

8年期间价格(或指标)走势一览图

在这里插入图片描述

5.2 序列变化情况计算

  • 计算每一天各项指标的差异值(后一天减去前一天结果)
  • 计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)
  • 计算平均计算pct_change指标
  • 绘图观察哪个指标平均增长率最高
  • 计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)

计算每一天各项指标的差异值(后一天减去前一天结果)

在这里插入图片描述

计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)

在这里插入图片描述

计算平均计算pct_change指标
绘图观察哪个指标平均增长率最高

在这里插入图片描述
除了波动率指数(.VIX指标)增长率最高外,就是亚马逊的股价了!贝佐斯简直就是宇宙最强光头强

计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)


#第二天数据
tm.shift(1).head()

#计算增长率
rets = np.log(tm/tm.shift(1))
print(rets.tail().round(3))#cumsum的小栗子:
print('小栗子的结果:',np.cumsum([1,2,3,4]))#增长率做cumsum需要对log进行还原,用e^x
rets.cumsum().apply(np.exp).plot(figsize=(10,6))

在这里插入图片描述
以上是在连续时间内的增长率,也就是说,2010年的1块钱,到2018年已经变为10多块了(以亚马逊为例)

(未完待续,该项目为demo预测部分有同学需要联系学长完成)

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/699451.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【操作系统】14.I/O设备怎么分配和回收?

5.2 I/O设备怎么分配和回收? 5.2.1 I/O核心子系统 I/O调度 设备保护 假脱机技术(SPOOLing技术) ​ 输入井和输出井 ​ 输入进程和输出进程 ​ 输入缓冲区和输出缓冲区 设备分配与回收 ​ 设备分配应考虑的因素 ​ 静态分配与动态分配 ​ 设备…

Runaway Queries 管理:提升 TiDB 稳定性的智能引擎

在数字化系统扮演重要角色的今天,数据库稳定性成为企业关注的核心问题。对于重要计算机系统而言,突发的性能下降可能对业务造成不可估量的损失。为了稳定数据库性能,用户可以从管理流程入手规范变更的测试,或者利用产品手段减少预…

3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection

3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection 论文链接:https://arxiv.org/pdf/2012.04355.pdf 代码链接:https://github.com/yezhen17/3DIoUMatch 作者单位:Stanford University等 发表平台:…

【JavaEE】_Servlet程序的编写方法

目录 1. 创建项目 2. 引入依赖 3. 创建目录结构 3.1 在main目录下创建一个webapp目录 3.2 在webapp目录下创建一个WEB-INF目录 3.3 在WEB-INF目录下创建一个web.xml文件 3.4 在web.xml中进行代码编写 4. 编写代码 4.1 在java目录下创建类 4.2 打印"hello world&…

无人机精准定位技术,GPS差分技术基础,RTK原理技术详解

差分GPS的基本原理 差分GPS(Differential GPS,简称DGPS)的基本原理是利用一个或多个已知精确坐标的基准站,与用户(移动站)同时接收相同的GPS卫星信号。由于GPS定位时会受到诸如卫星星历误差、卫星钟差、大…

uniapp离线打包(使用Android studio打包)

一、准备工作 安装HbuilderX,记住版本号下载对应HbuilderX版本的Android离线SDK,如我使用3.6.18版本打包,则对应应下载3.6.18版本的SDK(官网不提供旧版本的SDK,有些需要自己找)官网下载地址:ht…

2、Web攻防-SQL注入-联合查询注入

用途:个人学习笔记,有所借鉴,欢迎指正! 声明:只用于学习交流,点到为止,请勿非法测试。 概念: 联合查询注入:联合注入是回显注入的一种,也就是说联合注入的前…

【Python如何求出水仙花数】

1、求水仙花数Python代码如下: # 求水仙花数:只需要个十百位的3次幂之和与原数相等 for i in range(100, 1000): # 循环100-999整数i1 i % 10 # 取个位 “%”表示除以后取余数i2 i // 10 % 10 # 取十位i3 i // 100 # 取百位 “//”表示除以后取整…

二十六、直方图均衡化

项目功能实现&#xff1a;对灰度图片进行直方图均衡化操作 按照之前的博文结构来&#xff0c;这里就不在赘述了 一、头文件 histogram_equal.h #pragma once#include<opencv2/opencv.hpp>using namespace cv;class HISTOGRAM_EQUAL { public:void histogram_equal(Mat…

Android 解决后台服务麦克风无法录音问题

Android 解决后台无法录音问题 问题分析问题来源解决方案1. 修改清单文件:`AndroidManifest.xml`2. 修改启动服务方式3. 服务启动时创建前台通知并且指定前台服务类型参考文档最后我还有一句话要说我用心为你考虑黄浦江的事情,你心里想的却只有苏州河的勾当 问题分析 安卓9.…

抖音数据挖掘软件|视频内容提取

针对用户获取抖音视频的需求&#xff0c;我们开发了一款功能强大的工具&#xff0c;旨在解决用户在获取抖音视频时需要逐个复制链接、下载的繁琐问题。我们希望用户能够通过简单的关键词搜索&#xff0c;实现自动批量抓取视频&#xff0c;并根据需要进行选择性批量下载。因此&a…

【Flink精讲】Flink任务调度机制

Graph 的概念 Flink 中的执行图可以分成四层&#xff1a; StreamGraph -> JobGraph -> ExecutionGraph -> 物理执 行图。 StreamGraph&#xff1a;是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。JobGraph&#xff1a; StreamGraph …

[更新]ARCGIS之土地耕地占补平衡、进出平衡系统报备坐标txt格式批量导出工具(定制开发版)

序言 之前开发的耕地占补平衡报备格式&#xff0c;现在之前的基础上集成了耕地进出平衡报备格式导出。 之前版本软件详见&#xff1a;软件介绍 一、软件简介 本软件是基于arcgis二次开发的工具&#xff08;插件&#xff09;&#xff0c;需要授权后才能使用&#xff1b; 本软件…

设计模式——抽象工厂模式

定义: 抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09;提供一个创建一系列或相互依赖对象的接口&#xff0c;而无须指定它们具体的类。 概述:一个工厂可以提供创建多种相关产品的接口&#xff0c;而无需像工厂方法一样&#xff0c;为每一个产品都提供一个具体…

open3d 连接两个点云

连接两个点云 一、连接两个点云二、代码三、结果1.coloud1点云2.cloud2点云3.cloud1 和 colud2 合并4.生成连接字段&#xff08;拼接颜色&#xff09; 四、相关链接五、问题与解决方案1.问题2.解决方案 一、连接两个点云 看代码吧。。。 二、代码 import numpy as np import…

数据结构-二叉树深度详解(附带源码)

目录 一、基本概念&#xff1a; 二、实现二叉树的数据结构&#xff1a; 三、二叉树性质&#xff1a; 四、相关计算 五、搜索二叉树&#xff1a;任何一颗树的左子树都比它小&#xff0c;右子树都比它大 六、二叉树的存储结构 七、二叉树基本操作 八、源码&#xff08;有需…

使用pytest和allure框架实现自动化测试报告优化

pytest&#xff1a; 需要安装pytest和pytest-html(生成html测试报告&#xff09; pip install pytest 和 pip install pytest-html 命名规则 Pytest单元测试中的类名和方法名必须是以test开头,执行中只能找到test开头的类和方法&#xff0c;比unittest更加严谨 unittest&#x…

【centos】【vsftpd】FTP本地用户登录配置

目录 ftp与sftp安装vsftpd和ftp本地用户登录-不限制访问目录本地用户登录-限制访问目录有可能影响连接的问题pam认证selinux策略被动模式防火墙ipv4和ipv6 报错1、 530 Login incorrect2、500 OOPS: vsftpd: refusing to run with writable root inside chroot()3、227 Enterin…

day41WEB 攻防-通用漏洞XMLXXE无回显DTD 实体伪协议代码审计

本章知识点&#xff1a; 1 、 XML&XXE- 原理 & 发现 & 利用 & 修复等 2 、 XML&XXE- 黑盒模式下的发现与利用 3 、 XML&XXE- 白盒模式下的审计与利用 4 、 XML&XXE- 无回显 & 伪协议 & 产生层面 配套资源&#xff08;百度网盘&#x…

飞天使-linux操作的一些技巧与知识点7-devops

文章目录 简述devopsCICD 简述devops 让技术团队&#xff0c;运维&#xff0c;测试等团队实现一体式流程自动化 进阶版图 CICD 持续集成&#xff0c; 从编译&#xff0c;测试&#xff0c;发布的完成自动化流程 持续交付&#xff0c;包含持续集成&#xff0c;并且将项目部署…