RT-Thread 时钟 timer delay 相关

前言

  • 此处,介绍对delay 时钟 timer 这几部分之间的关联和相关的知识点;
  • 本来只是想介绍一下 delay的,但是发现说到delay 不先 提到 先验知识 晶振\时钟\时钟节拍\定时器 好像没法解释透彻,所以就变成了 晶振\时钟\时钟节拍\定时器\delay 的很简单的概括一遍;
  • 并附带上能直接运行的示例代码;

一个可以跳过的Tip -> 为了大家方便跳过,我设置成了图片,赶时间可以不点开

在这里插入图片描述


晶振 \ 时钟 \ 时钟节拍 \ 定时器 \ delay

定义

  • 晶振(Crystal Oscillator):
    晶振是硬件级别的时钟源,为微控制器(MCU)提供基准频率。它是系统所有时间相关功能的根基。晶振的频率决定了MCU的主时钟频率,通常称为HCLK(主时钟)。这个频率是非常重要的,因为它直接影响到微控制器的执行速度和整个系统的性能。
  • 时钟(Clock):
    在 RT-Thread 中,时钟通常指的是系统时钟,它是由晶振通过分频、倍频等方式产生的。系统时钟为操作系统和应用程序提供时间基准。系统时钟可以分为不同的类别,如核心时钟、外设时钟等,它们由晶振经过不同的处理得到。
  • 时钟节拍(Tick):
    时钟节拍是操作系统的基本时间单位,RT-Thread 通过硬件定时器来产生固定频率的时钟节拍。每一个时钟节拍代表操作系统中一个最小的时间片段。操作系统利用这些时钟节拍来进行任务调度、延时处理等操作。时钟节拍的频率(通常称为Tick Rate)决定了系统调度的精度和响应速度。例如,一个Tick Rate为1000Hz的系统每个时钟节拍代表1ms。
  • 定时器(Timer):
    定时器是基于时钟节拍工作的,用于执行定时任务。在 RT-Thread 中,定时器可以是一次性的或周期性的。定时器使用时钟节拍来计算时间,当达到指定的时钟节拍数时,定时器超时并执行相应的回调函数。
  • delay:
    delay 函数(在 RT-Thread 中通常为 rt_thread_delay())用于暂停当前线程执行指定的时间段。这个延时是以时钟节拍为单位的。当线程调用 rt_thread_delay() 时,它会被挂起,直到指定的时钟节拍数过去。在这段时间内,调度器会将CPU控制权转移给其他就绪状态的线程。

前面的解释可能太长了,我们再精简一点


  • 晶振(Crystal Oscillator):
    晶振提供了硬件级别的时钟源,它确定了微控制器(MCU)的主时钟频率(HCLK),这直接影响微控制器的执行速度和整个系统的性能。晶振是所有时间管理和计时功能的基础。
  • 时钟(Clock):
    系统时钟是由晶振产生的,可以通过分频、倍频等方式调整,为操作系统和应用程序提供时间基准。时钟可以有不同的类型(如核心时钟、外设时钟),它们支持系统各个部分的运作和时间管理。
  • 时钟节拍(Tick):
    时钟节拍是由系统时钟驱动的,表示操作系统的基本时间单位,用于任务调度和时间管理。时钟节拍的频率(Tick Rate)决定了系统的调度精度和响应速度,每个时钟节拍代表了系统中的一个固定时间片。
  • 定时器(Timer):
    定时器利用时钟节拍来计划和执行定时任务。它可以设置为一次性或周期性,用于在特定的时间点或经过特定时间段后执行任务。定时器的工作是基于时钟节拍的,它们使得在精确的时间执行任务成为可能。
  • delay:
    rt_thread_delay() 函数用于使当前线程暂停执行特定的时钟节拍数,从而提供延时功能。如果调用官方api,在此期间,CPU的控制权会转移给其他就绪状态的线程,实现有效的多任务处理。

一句话概括


  • 晶振为系统提供基本的时间频率,系统时钟根据晶振调整形成不同的时间基准
  • 时钟节拍根据系统时钟生成,为操作系统提供一个均匀的时间度量
  • 定时器和延时功能(delay)则是基于这些时钟节拍来安排和管理时间和任务的执行。
  • 观察 \ 运行 \ 修改 下方代码,获得更深入了解

示例代码

  • 通过这个示例,可以展示 RT-Thread 如何处理线程延时和定时器回调,以及如何利用系统的时钟节拍来进行时间管理和任务调度。
  • 在这个示例中,我们首先创建了一个线程 my_thread,它在一个循环中每隔一秒打印一次计数器 count 的值,并通过 rt_thread_delay() 函数实现延时。RT_TICK_PER_SECOND 定义了一秒内的时钟节拍数,因此 rt_thread_delay(RT_TICK_PER_SECOND) 将使线程延时一秒。
  • 接下来,我们创建了一个周期性定时器 my_timer,它每秒触发一次,并在每次触发时打印出 “Timer tick”。定时器使用 RT_TICK_PER_SECOND 作为超时时间,设置为周期性定时器 RT_TIMER_FLAG_PERIODIC,这意味着它会每隔一秒自动重启并触发回调函数 timer_callback。
#include <rtthread.h>#define THREAD_PRIORITY 25
#define THREAD_STACK_SIZE 512
#define THREAD_TIMESLICE 5/* 定义线程控制块 */
static struct rt_thread my_thread;
/* 定义线程栈 */
ALIGN(RT_ALIGN_SIZE)
static rt_uint8_t my_thread_stack[THREAD_STACK_SIZE];/* 线程入口函数 */
static void my_thread_entry(void *parameter)
{rt_uint32_t count = 0;/* 线程主循环 */while (1){/* 打印信息并延时一秒 */rt_kprintf("Thread count: %d\n", count++);rt_thread_delay(RT_TICK_PER_SECOND); // 延时1秒,RT_TICK_PER_SECOND是系统时钟节拍数,代表一秒}
}/* 定时器回调函数 */
static void timer_callback(void *parameter)
{rt_kprintf("Timer tick\n");
}/* 应用程序入口 */
int main(void)
{rt_timer_t my_timer;rt_err_t result;/* 初始化线程 */result = rt_thread_init(&my_thread,"mythread",my_thread_entry,RT_NULL,&my_thread_stack[0],sizeof(my_thread_stack),THREAD_PRIORITY,THREAD_TIMESLICE);if (result == RT_EOK){rt_thread_startup(&my_thread);}/* 创建定时器 */my_timer = rt_timer_create("mytimer",          // 定时器名称timer_callback,     // 定时器到期时回调的函数RT_NULL,            // 调用回调函数时传递的参数RT_TICK_PER_SECOND, // 定时时间,这里设置为1秒RT_TIMER_FLAG_PERIODIC); // 定时器模式,周期性执行/* 启动定时器 */if (my_timer != RT_NULL){rt_timer_start(my_timer);}return 0;
}

  • 写到这里了,其实对 delay 定时器 基本的了解已经搭建起来了,其实对于开发而言,差不多够用了
  • 感兴趣的话,可以继续往下翻,我们看一下更深入的准确的定义

在这里插入图片描述


定义

  • delay 和 sleep 是两种差不多的操作在不同平台上的叫法
  • 一般不需要太过关注如何区分,在这里我们看作是一样的
  • delay 我们这里提到两种实现方式,一种是通过估计计算耗时来实现延时;另一种是 Timer定时器实现;通过估计计算耗时的方式我们没什么好说的,我们关注的是 相对智能的\高效的 基于 时钟(timer)实现的
  • 在介绍之前,我们需要一起提到 晶振\时钟\时钟节拍\定时器\delay 之间的关系
  • 在 RT-Thread 实时操作系统中,delay 函数(如 rt_thread_delay())用于挂起当前线程一定的时间。在这段时间内,CPU 将不会执行当前线程,而是转而执行其他的就绪状态线程。如果没有其他线程处于就绪状态,则可能执行空闲线程(idle thread),该线程通常用于执行低优先级的后台任务,如内存清理和系统监视。

  • RT-Thread 的 rt_thread_delay() 函数是专门设计用于多任务环境的,不同于 MicroPython 的 time.sleep(),RT-Thread 的延时操作是为多线程设计的,确实会将 CPU 时间让给其他的线程。这是因为 RT-Thread 是一个完整的实时操作系统,支持多线程和任务调度,所以它可以在一个线程暂停执行时调度其他线程运行。

  • 在 RT-Thread 中,当你调用 rt_thread_delay() 时,你实际上是将当前线程放入睡眠状态直到指定的延时时间过去。这个功能使得 CPU 资源可以被有效地分配给其他需要执行的线程,从而提高系统的总体效率和响应性。

  • 总结来说,RT-Thread 中的 delay 类操作(如 rt_thread_delay())确实会导致当前线程挂起,并允许其他线程使用 CPU。这与 MicroPython 中的 time.sleep() 在操作系统层面上有相似的效果,尽管底层的实现机制和支持的功能可能不同,因为 RT-Thread 是一个多线程的实时操作系统,而 MicroPython 通常运行在单线程环境中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/699189.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

反序列化 [NPUCTF2020]ReadlezPHP1

打开题目 直接查看源代码 打开源代码发现了个./time.php?source 访问一下 审计代码&#xff1a; 现存在反序列化语句&#xff1a;$ppp unserialize($_GET["data"]);和执行漏洞&#xff1a;echo $b($a); 发现在__destruct()方法里面有 echo $b($a); 这个是php的…

Stable Diffusion 模型分享:A-Zovya RPG Artist Tools(RPG 大师工具箱)

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八 下载地址 模型介绍 A-Zovya RPG Artist Tools 模型是一个针对 RPG 训练的一个模型&#xff0c;可以生成一些 R…

基于springboot+vue的靓车汽车销售网站(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

Shiro 1.2.4反序列化漏洞

一、shiro描述 Apache Shiro是一个强大且易用的Java安全框架&#xff0c;执行身份验证、授权、密码和会话管理。使用Shiro的易于理解的API&#xff0c;可以快速、轻松地获得任何应用程序,从最小的移动应用程序到最大的网络和企业应用程序 二、漏洞原理 AES加密的密钥Key被硬…

python递归算法

递归算法 一、嵌套调用的过程二、递归的基本原则1、递归的基本原则2、无限递归调用3、正常递归调用4、阶乘问题5、力扣&#xff1a;231. 2 的幂6、力扣面试题 08.05. 递归乘法7、力扣、326. 3 的幂8、力扣342. 4的幂 一、嵌套调用的过程 def show1():print("show 1 run s…

自学Python第十八天-自动化测试框架(二):DrissionPage、appium

自学Python第十八天-自动化测试框架&#xff08;二&#xff09;&#xff1a;DrissionPage、appium DrissionPage环境和安装配置准备工作简单的使用示例控制浏览器收发数据包模式切换 浏览器模式创建浏览器对象访问页面加载模式none 模式技巧 获取页面信息页面交互查找元素ele()…

uniapp腾讯地图JavaScript Api,H5端和原生APP端可用

因项目需要&#xff0c;在uniapp中集成使用腾讯地图&#xff0c;为了方便维护&#xff0c;希望通过一套代码实现H5和APP同时可用。H5显示相对简单&#xff0c;APP端比较麻烦&#xff0c;记录下实现过程 一、集成步骤 1.使用 renderjs script标签使用renderjs&#xff0c;因为…

一文了解LM317T的引脚介绍、参数解读

LM317T是一种线性稳压器件&#xff0c;它具有稳定输出电压的特性。LM317T可以通过调整其输出电阻来确保输出电压的稳定性&#xff0c;因此被广泛应用于各种电子设备中。 LM317T引脚图介绍 LM317T共有3个引脚&#xff0c;分别是&#xff1a; 输入引脚&#xff08;输入电压V_in&…

软件应用场景,物流货运配货单打印模板软件单据打印查询管理系统软件教程

软件应用场景&#xff0c;物流货运配货单打印模板软件单据打印查询管理系统软件教程 一、前言 以下软件以 佳易王物流快运单打印查询管理系统软件V17.1 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 1、打印模式可以分为 直打模式和套打模式 直打模…

MySQL-----多表操作

介绍 实际开发中&#xff0c;一个项目通常需要很多张表才能完成。例如:一个商城项目就需要分类表(category)、商品表(products)、订单表(orders)等多张表。且这些表的数据之间存在一定的关系&#xff0c;接下来我们将在单表的基础上&#xff0c;一起学习多表方面的知识。 一 多…

使用HiveMQ实现Android MQTT

MQTT官网&#xff1a;https://mqtt.org/ 百度Android MQTT&#xff0c;或者B站上搜索&#xff0c;发现大多使用https://github.com/eclipse/paho.mqtt.android&#xff0c;这是Eclipse的一个Android MQTT客户端实现库&#xff0c;但是我发现这个库在运行到高版本的手机上时报错…

Rust核心:【所有权】相关知识点

rust在内存资源管理上采用了&#xff08;先进优秀&#xff1f;算吗&#xff09;但特立独行的设计思路&#xff1a;所有权。这是rust的核心&#xff0c;贯穿在整个rust语言的方方面面&#xff0c;并以此为基点来重新思考和重构软件开发体系。 涉及到的概念点&#xff1a;借用&am…

使用Postman和JMeter进行signature签名

一、前言 ​ 有些接口的请求会带上sign&#xff08;签名&#xff09;进行请求&#xff0c;各接口对sign的签名内容、方式可能不一样&#xff0c;但一般都是从接口的入参中选择部分内容组成一个字符串&#xff0c;然后再进行签名操作, 将结果赋值给sign; 完整规范的接口文档都会…

Spring Boot与HikariCP:性能卓越的数据库连接池

点击下载《Spring Boot与HikariCP&#xff1a;性能卓越的数据库连接池》 1. 前言 本文将详细介绍Spring Boot中如何使用HikariCP作为数据库连接池&#xff0c;包括其工作原理、优势分析、配置步骤以及代码示例。通过本文&#xff0c;读者将能够轻松集成HikariCP到Spring Boot…

六、回归与聚类算法 - 模型保存与加载

目录 1、API 2、案例 欠拟合与过拟合线性回归的改进 - 岭回归分类算法&#xff1a;逻辑回归模型保存与加载无监督学习&#xff1a;K-means算法 1、API 2、案例

vue : 无法加载文件 C:\Program Files\nodejs\node_global\vue.ps1,因为在此系统上禁止运行脚本。

解决方法&#xff1a; 打开PowerShell&#xff0c;在命令框输入set-ExecutionPolicy RemoteSigned 在PowerShell中输入会出现如下图&#xff0c;输入y即可。

RabbitMQ 部署方式选择

部署模式 RabbitMQ支持多种部署模式&#xff0c;可以根据应用的需求和规模选择适合的模式。以下是一些常见的RabbitMQ部署模式&#xff1a; 单节点模式&#xff1a; 最简单的部署方式&#xff0c;所有的RabbitMQ组件&#xff08;消息存储、交换机、队列等&#xff09;都运行在…

第九节HarmonyOS 常用基础组件28-Select

1、描述 提供下拉选择菜单&#xff0c;可以让用户在多个选项之间选择。 2、接口 Select(options:Array<SelectOption>) 3、SelectOption对象说明 参数名 参数类型 必填 描述 value ResourceStr 是 下拉选项内容。 icon ResourceStr 否 下拉选项图标。 4…

【前端素材】推荐优质后台管理系统Sneat平台模板(附源码)

一、需求分析 后台管理系统是一种用于管理网站、应用程序或系统的工具&#xff0c;它通常作为一个独立的后台界面存在&#xff0c;供管理员或特定用户使用。下面详细分析后台管理系统的定义和功能&#xff1a; 1. 定义 后台管理系统是一个用于管理和控制网站、应用程序或系统…

浏览器录屏技术:探索网页内容的视觉记录之道

title: 浏览器录屏技术&#xff1a;探索网页内容的视觉记录之道 date: 2024/2/23 14:32:49 updated: 2024/2/23 14:32:49 tags: 浏览器录屏技术原理Web API应用场景用户体验在线教育产品演示 在当今数字化时代&#xff0c;浏览器录屏技术已经成为了一种强大的工具&#xff0c;…