343. 整数拆分
题目链接:整数拆分
题目描述:
给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。
返回 你可以获得的最大乘积 。
解题思路:
1、确定dp数组(dp table)以及下标的含义
设置dp[i] 为i的拆分最大值
2、确定递推公式
dp[i] = max(dp[i], max((i - j) * j, dp[i - j] *j));
前一部分为将i分为i-j和j两部分,后一部分是将i分为j和更多的分块的i-j。
3、dp数组如何初始化
按照定义可以知道只有dp[2]有意义为1
4、确定遍历顺序
dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。
5、举例推导dp数组
代码实现:
class Solution {public int integerBreak(int n) {int[] dp = new int[n+1];dp[2] = 1;for(int i = 3;i<=n;i++){for(int j = 1; j<=i-j;j++){dp[i] = Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]));System.out.println(dp[i]);}}return dp[n];}
}
96. 不同的二叉搜索树
题目链接:不同的二叉搜索树
题目描述:
给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
解题思路:
本题主要的难点在于递推过程的理解,借用卡哥的解释
当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!
(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)
当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!
当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!
发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。
思考到这里,这道题目就有眉目了。
dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
有2个元素的搜索树数量就是dp[2]。
有1个元素的搜索树数量就是dp[1]。
有0个元素的搜索树数量就是dp[0]。
所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]
代码实现:
class Solution {public int numTrees(int n) {//初始化 dp 数组int[] dp = new int[n + 1];//初始化0个节点和1个节点的情况dp[0] = 1;dp[1] = 1;for (int i = 2; i <= n; i++) {for (int j = 1; j <= i; j++) {//对于第i个节点,需要考虑1作为根节点直到i作为根节点的情况,所以需要累加//一共i个节点,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-jdp[i] += dp[j - 1] * dp[i - j];}}return dp[n];}
}