正交匹配追踪(Orthogonal Matching Pursuit, OMP)的MATLAB实现

压缩感知(Compressed Sensing, CS)是一种利用稀疏信号的先验知识,用远少于奈奎斯特采样定理要求的样本数目恢复整个信号的技术。正交匹配追踪(Orthogonal Matching Pursuit, OMP)是一种常见的贪婪算法(Greedy algorithm),用于解决压缩感知中的信号重构问题。OMP算法试图找到一组稀疏基,这些基与测量值之间有最大的相关性,并且用于迭代地重构原始信号。

OMP算法

下面是OMP算法的简要步骤:

  1. 初始化残差 ( r_0 = y ),其中 ( y ) 是测量向量,稀疏性基矩阵 ( \Phi ),观测矩阵 ( \Psi ),支撑集 ( \Lambda = \emptyset )(选择的基函数的索引集),和迭代计数器 ( k = 0 )。

  2. 找到与当前残差最相关的列向量(原子) ( \phi_i )
    ( i = \arg\max_{j} | \langle r_k, \phi_j \rangle | )。

  3. 将选中的索引 ( i ) 加到支撑集 ( \Lambda ) 中 ( \Lambda = \Lambda \cup {i} )。

  4. 用最小二乘法从支撑集( \Lambda )上的列构建信号的近似解,即解线性方程 ( \Psi_{\Lambda} x’ = y ),得到( x’{\Lambda} ),在( \Lambda )上的系数,其中 ( \Psi{\Lambda} ) 表示 ( \Psi ) 的列仅包含 ( \Lambda ) 中索引对应的列。

  5. 更新残差 ( r_{k+1} = y - \Psi_{\Lambda} x’ )。

  6. 检查结束条件(例如,残差足够小,( ||r_{k+1}||_2 < \epsilon ) 或已达到预定的迭代次数)。如果未达到结束条件,( k = k + 1 ) 并返回步骤 2。

  7. 输出重建信号,将 ( x’ ) 在非 ( \Lambda ) 的位置上填充零。

MATLAB代码

以下是用MATLAB实现上述过程的代码示例:

% 定义参数
N = 128;       % 信号长度
M = 32;        % 测量数量
K = 10;        % 稀疏度(信号中非零值数量)% 生成一个 K-稀疏信号(随机位置上有非零值)
x = zeros(N, 1);
q = randperm(N);
x(q(1:K)) = randn(K, 1);% 创建一个随机高斯测量矩阵 Phi
Phi = randn(M, N) / sqrt(M);% 生成测量值 y
y = Phi * x;% 调用 OMP 算法
x_hat = OMP(y, Phi, eye(N), K);% 绘制原始信号和恢复信号
figure;
subplot(2, 1, 1);
stem(x, 'b');
title('原始稀疏信号');
subplot(2, 1, 2);
stem(x_hat, 'r');
title('OMP恢复信号');% OMP 函数
function x_hat = OMP(y, Phi, Psi, K)% y - 测量向量% Phi - 传感矩阵% Psi - 稀疏基矩阵(在这里是单位矩阵)% K - 稀疏度或迭代次数% 初始化r = y;                         % 初始残差(即测量值)index_set = [];                % 支撑集合x_hat = zeros(size(Psi, 2), 1); % 估计信号初始化for k = 1:K% 计算相关性correlations = abs(Phi'*r);% 选择具有最大相关性的索引[~, idx] = max(correlations);index_set = union(index_set, idx);% 使用当前支撑集合进行最小二乘求解x_temp = zeros(size(Psi, 2), 1);x_temp(index_set) = pinv(Phi(:, index_set)) * y;% 更新残差r = y - Phi(:, index_set) * x_temp(index_set);% 检查停止准则,可以是基于残差的if norm(r) < 1e-6breakendendx_hat(index_set) = x_temp(index_set);
end

输出结果

输出结果如下,上面是原始信号,下面是恢复后的信号。

在这里插入图片描述

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

下面两本书欢迎大家参考学习。

OpenCV轻松入门

李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。

在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。

本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
在这里插入图片描述

计算机视觉40例

李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/696795.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在苹果电脑MAC上安装Windows10(双系统安装的详细图文步骤教程)

在苹果电脑MAC上安装Windows10&#xff08;双系统安装的详细图文步骤教程&#xff09; 一、准备工作准备项1&#xff1a;U盘作为系统安装盘准备项2&#xff1a;您需要安装的系统镜像 二、启动转换助理步骤1&#xff1a;找到启动转换助理步骤2&#xff1a;启动转换助理步骤3&…

波奇学Linux:进程通信管道

进程通信 管道&#xff1a;基于文件级别的单向通信 创建父子进程&#xff0c;使得进程的struct file*fd_array[]的文件描述符指向同一个struct file文件&#xff0c;这个文件是内存级文件。 父进程关写端&#xff0c;子进程再关闭读端。实现单向通信 子进程写入&#xff0c;父进…

C++ Primer 笔记(总结,摘要,概括)——第3章 字符串、向量和数组

目录 3.1 命名空间的using声明 3.2 标准库类型string 3.2.1 定义和初始化string对象 3.2.2 string对象上的操作 3.2.3 处理string对象中的字符 3.3 标准库类型vector 3.3.1 定义和初始化vector对象 3.3.2 向vector对象中添加元素 3.3.3 其他vector操作 3.4 迭代器介绍 3.4.…

如何使用rocketmq实现分布式事务?

什么是rocketmq事务消息 事务消息是 Apache RocketMQ 提供的一种高级消息类型&#xff0c;支持在分布式场景下保障消息生产和本地事务的最终一致性。 RocketMQ的分布式事务又称为“半消息事务”。 事务消息处理流程 RocketMQ是靠半消息机制实现分布式事务 事务消息&#x…

Spring之AOP源码解析(上)

Aop相关注解 EnableTransactionManagementEnableAspectJAutoProxyEnableAsync... 从注解切入来看看这些注解都干了什么 Import注解作用简述 注入的类一般继承ImportSelector或者ImportBeanDefinitionRegistrar接口 继承ImportSelector接口&#xff1a;selectImports方法返回…

pandas/geopandas 笔记:判断地点在不在路网上 不在路网的点和路网的距离

0 导入库 import osimport pandas as pd pd.set_option(display.max_rows,5)import osmnx as oximport geopandas as gpd from shapely.geometry import Point 1 读取数据 假设我们有 如下的数据&#xff1a; 1.1 新加坡室外基站位置数据 cell_stationpd.read_csv(outdoor…

TSINGSEE青犀AI智能分析网关V4初始配置与算法相关配置介绍

TSINGSEE青犀AI智能分析网关V4内置了近40种AI算法模型&#xff0c;支持对接入的视频图像进行人、车、物、行为等实时检测分析&#xff0c;上报识别结果&#xff0c;并能进行语音告警播放。硬件管理平台支持RTSP、GB28181协议、以及厂家私有协议接入&#xff0c;可兼容市面上常见…

linux下ffmpeg调用GPU硬件解码(VDPAU/VAAPI)保存文件

本文讲解在linux下面&#xff0c;如何通过ffmpeg调用GPU硬件解码&#xff0c;并保存解码完的yuv文件。 其实&#xff0c;ffmpeg自带的例子hw_decode.c这个文件&#xff0c;就已经能满足要求了&#xff0c;因此&#xff0c;本文就尝试讲解以下hw_decode这个例子。hw_decode.c可以…

watchpoint

前言 内存被踩&#xff0c;通过 watchpoint 找到真凶 实例 以 smsc911x 网卡驱动为基体&#xff0c;进行实验&#xff0c;和网卡本身功能无关&#xff0c; 每执行一次 ifconfig eth0 up&#xff0c;就会调用一次 smsc911x_open()&#xff0c;我在这里设计了一段代码&#xf…

数学知识(四)(容斥原理、博弈论)

一、容斥原理 容斥原理公式 一共加或者减的式子个数 &#xff08;一&#xff09;利用容斥原理解决求能被质数整除的数的个数 890计算能被整除的数的个数 因为一共有2^n-1种选法&#xff0c;可以用位运算的方式枚举&#xff0c;对于得到的每一种选法&#xff0c;根据存在的数…

六、回归与聚类算法 - 逻辑回归与二分类

线性回归欠拟合与过拟合线性回归的改进 - 岭回归分类算法&#xff1a;逻辑回归模型保存与加载无监督学习&#xff1a;K-means算法 1、应用场景 2、原理 2.1 输入 2.2 激活函数 3、损失以及优化 3.1 损失 3.2 优化 4、逻辑回归API 5、分类的评估方法 5.1 精确率和召回率 5.2…

【Spring】IoC容器 控制反转 与 DI依赖注入 配置类实现版本 第四期

文章目录 基于 配置类 方式管理 Bean一、 配置类和扫描注解二、Bean定义组件三、高级特性&#xff1a;Bean注解细节四、高级特性&#xff1a;Import扩展五、基于注解配置类方式整合三层架构组件总结 基于 配置类 方式管理 Bean Spring 完全注解配置&#xff08;Fully Annotatio…

Kotlin学习 6

1.接口 interface Movable {var maxSpeed: Intvar wheels: Intfun move(movable: Movable): String}class Car(var name: String, override var wheels: Int 4, _maxSpeed: Int) : Movable {override var maxSpeed: Int _maxSpeedget() fieldset(value) {field value}overr…

C语言读取 ini 配置文件,修改/添加键值对

C语言读取 ini 配置文件&#xff0c;修改/添加键值对 C语言读取 ini 配置文件&#xff0c;对section中的键值对进行修改/添加&#xff0c;如果section不存在&#xff0c;则在末尾将新的section/key/value 添加进去。 一、了解什么是INI文件&#xff1f; ini 文件是Initializ…

【大数据】Flink 之部署篇

Flink 之部署篇 1.概述和参考架构2.可重复的资源清理3.部署模式3.1 Application 模式3.2 Per-Job 模式&#xff08;已废弃&#xff09;3.3 Session 模式 Flink 是一个多用途框架&#xff0c;支持多种不同的混合部署方案。下面&#xff0c;我们将简要介绍 Flink 集群的构建模块、…

【html学习笔记】3.表单元素

1.文本框 1.1 语法 <input type "text">表示文本框。且只能写一行 1.2 属性 使用属性size 设置文本框大小 <input type"text" size"10">2. 使用属性value 来设置文本框的默认文字 <input type"text" size"…

Vue状态管理库-Pinia

一、Pinia是什么&#xff1f; Pinia 是 Vue 的专属状态管理库&#xff0c;它允许支持跨组件或页面共享状态&#xff0c;即共享数据&#xff0c;他的初始设计目的是设计一个支持组合式API的 Vue 状态管理库&#xff08;因为vue3一个很大的改变就是组合式API&#xff09;,当然这…

PFA三角烧瓶实验室PFA锥形瓶本底纯净耐腐蚀性强

PFA三角烧瓶外观呈平底圆锥状&#xff0c;下阔上狭&#xff0c;有一圆柱形颈部&#xff0c;上方有一较颈部阔的开口&#xff0c;可用塞子封闭。PFA三角烧瓶也称PFA锥形瓶&#xff0c;PFA反应瓶&#xff0c;PFA三角烧瓶、PFA依氏烧瓶、PFA锥形烧瓶&#xff0c;PFA鄂伦麦尔瓶等。…

普中51单片机学习(串口通信)

串口通信 原理 计算机通信是将计算机技术和通信技术的相结合&#xff0c;完成计算机与外部设备或计算机与计算机之间的信息交换 。可以分为两大类&#xff1a;并行通信与串行通信。并行通信通常是将数据字节的各位用多条数据线同时进行传送 。控制简单、传输速度快&#xff1…

【Python】Python实现串口通信(Python+Stm32)

&#x1f389;欢迎来到Python专栏~Python实现串口通信 ☆* o(≧▽≦)o *☆嗨~我是小夏与酒&#x1f379; ✨博客主页&#xff1a;小夏与酒的博客 &#x1f388;该系列文章专栏&#xff1a;Python学习专栏 文章作者技术和水平有限&#xff0c;如果文中出现错误&#xff0c;希望…