互联网加竞赛 大数据疫情分析及可视化系统

文章目录

  • 0 前言
  • 2 开发简介
  • 3 数据集
  • 4 实现技术
    • 4.1 系统架构
    • 4.2 开发环境
    • 4.3 疫情地图
      • 4.3.1 填充图(Choropleth maps)
      • 4.3.2 气泡图
    • 4.4 全国疫情实时追踪
    • 4.6 其他页面
  • 5 关键代码
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 大数据疫情分析及可视化系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 开发简介

学长从各省累计确诊人数随时间增长的态势以及空间分布随时间增长的态势入手,利用所收集的数据将各省累计确诊人数的时空分布用地图、折线图、堆叠条形图的形式呈现出来,从总体态势进行大致分析,然后再通过在不同粒度上展示各省疫情相关的详细信息,以发现其在不同时间段影响其态势变化的原因(境外输入、相关政策颁布等)。

同时还将疫情相关确诊、死亡等数据与各省的GDP、受教育程度、城镇化率、医疗卫生水平进行联系,以发现其与GDP、受教育程度、城镇化率之间是否存在关系。

其目标用户是政府等防控机关,通过本系统可以分析疫情时空分布模式、监控疫情发展态势、评估疫情防控措施。

3 数据集

数据源于爬虫与手动搜集:

weibo.json 新浪微博实时热搜前50的数据

在这里插入图片描述

ProvinceData.json 省市疫情详情

在这里插入图片描述
源于中国国家统计局(2018年中国统计年鉴)的数据

2020-01-10至2020-02-06数据来自国家,各省,武汉市卫健委疫情公告,2020-02-07后数据从今日头条接口采集
在这里插入图片描述
在这里插入图片描述
境外输入数据(手动从网上新闻中搜集)

在这里插入图片描述

4 实现技术

4.1 系统架构

在这里插入图片描述

4.2 开发环境

  • 1、Node.js(前端Vue和后端node都依赖该环境)
  • 2、开发工具:Git,vscode,Hbuilder,pycharm
  • 3、开发语言:Python,HTML+CSS+JavaScript
  • 4、重点依赖库:echarts,bootstrap,jQuery

4.3 疫情地图

新型冠状病毒肺炎已经开始全球蔓延,形势越来越严峻,我们除了关注国内发展疫情发展,也开始关注境外疫情的发展变化。通过地理可视化我们能够很直观的看到的各个区域的疫情严重程度。

4.3.1 填充图(Choropleth maps)

  • 填充图适合表达区域之间的差异。
  • 填充图能够很好的展现形全局差异,细微的差异很难表达。
  • 但填充图的展现效果受区域面积影响比较大,容易形成误导

在这里插入图片描述

上面的填充图,我们可以关注到亚洲,欧洲,美洲三大疫情区域,但是我们很难关注到,意大利、韩国的疫情严重程度。

4.3.2 气泡图

气泡图使用不同大小的圆圈表示区域上的数值。它在每个地理坐标上显示一个气泡,或在每个区域显示一个气泡。

下图我们以气泡图形式进行疫情地图可视化

在这里插入图片描述

通过气泡图我们可以很明确的看出世界上疫情比较严重的国家,而且不会受到区域面积的干扰,欧洲一些面积比较小的国家我们也能够清晰的识别出来。气泡图表达方式缺点在于气泡过多,过大将会产生遮盖现在。
气泡是一种比较好的展现形式,如果使用方式不当也会产生干扰,比如数据映射方法选择,颜色色带选择都会影响数据表达的结果。

关键代码:


# 作者:丹成学长 q746876041
import json
import requests
import jsonpath
from pyecharts.charts import Map,Geo
from pyecharts import options as opts
from pyecharts.globals import GeoType,RenderType
# 1.目标网站
url=‘https://api.inews.qq.com/newsqa/v1/automation/foreign/country/ranklist’
# 2.请求资源
resp=requests.get(url)
# 3.提取数据
# 类型转换 json–>dict
data=json.loads(resp.text)
name = jsonpath.jsonpath(data,“KaTeX parse error: Expected 'EOF', got '#' at position 14: ..name") #̲ print(name) ……confirm”)
# print(confirm)
data_list = zip(name,confirm)
# print(list(data_list))
# 4.可视化 matplotlib 和 pyecharts

nameMap = {'Singapore Rep.':'新加坡','Dominican Rep.':'多米尼加','Palestine':'巴勒斯坦','Bahamas':'巴哈马','Timor-Leste':'东帝汶','Afghanistan':'阿富汗','Guinea-Bissau':'几内亚比绍',"Côte d'Ivoire":'科特迪瓦','Siachen Glacier':'锡亚琴冰川',"Br. Indian Ocean Ter.":'英属印度洋领土','Angola':'安哥拉','Albania':'阿尔巴尼亚','United Arab Emirates':'阿联酋','Argentina':'阿根廷','Armenia':'亚美尼亚','French Southern and Antarctic Lands':'法属南半球和南极领地','Australia':'澳大利亚','Austria':'奥地利','Azerbaijan':'阿塞拜疆','Burundi':'布隆迪','Belgium':'比利时','Benin':'贝宁','Burkina Faso':'布基纳法索','Bangladesh':'孟加拉国','Bulgaria':'保加利亚','The Bahamas':'巴哈马','Bosnia and Herz.':'波斯尼亚和黑塞哥维那','Belarus':'白俄罗斯','Belize':'伯利兹','Bermuda':'百慕大','Bolivia':'玻利维亚','Brazil':'巴西','Brunei':'文莱','Bhutan':'不丹','Botswana':'博茨瓦纳','Central African Rep.':'中非','Canada':'加拿大','Switzerland':'瑞士','Chile':'智利','China':'中国','Ivory Coast':'象牙海岸','Cameroon':'喀麦隆','Dem. Rep. Congo':'刚果民主共和国','Congo':'刚果','Colombia':'哥伦比亚','Costa Rica':'哥斯达黎加','Cuba':'古巴','N. Cyprus':'北塞浦路斯','Cyprus':'塞浦路斯','Czech Rep.':'捷克','Germany':'德国','Djibouti':'吉布提','Denmark':'丹麦','Algeria':'阿尔及利亚','Ecuador':'厄瓜多尔','Egypt':'埃及','Eritrea':'厄立特里亚','Spain':'西班牙','Estonia':'爱沙尼亚','Ethiopia':'埃塞俄比亚','Finland':'芬兰','Fiji':'斐','Falkland Islands':'福克兰群岛','France':'法国','Gabon':'加蓬','United Kingdom':'英国','Georgia':'格鲁吉亚','Ghana':'加纳','Guinea':'几内亚','Gambia':'冈比亚','Guinea Bissau':'几内亚比绍','Eq. Guinea':'赤道几内亚','Greece':'希腊','Greenland':'格陵兰','Guatemala':'危地马拉','French Guiana':'法属圭亚那','Guyana':'圭亚那','Honduras':'洪都拉斯','Croatia':'克罗地亚','Haiti':'海地','Hungary':'匈牙利','Indonesia':'印度尼西亚','India':'印度','Ireland':'爱尔兰','Iran':'伊朗','Iraq':'伊拉克','Iceland':'冰岛','Israel':'以色列','Italy':'意大利','Jamaica':'牙买加','Jordan':'约旦','Japan':'日本','Japan':'日本本土','Kazakhstan':'哈萨克斯坦','Kenya':'肯尼亚','Kyrgyzstan':'吉尔吉斯斯坦','Cambodia':'柬埔寨','Korea':'韩国','Kosovo':'科索沃','Kuwait':'科威特','Lao PDR':'老挝','Lebanon':'黎巴嫩','Liberia':'利比里亚','Libya':'利比亚','Sri Lanka':'斯里兰卡','Lesotho':'莱索托','Lithuania':'立陶宛','Luxembourg':'卢森堡','Latvia':'拉脱维亚','Morocco':'摩洛哥','Moldova':'摩尔多瓦','Madagascar':'马达加斯加','Mexico':'墨西哥','Macedonia':'马其顿','Mali':'马里','Myanmar':'缅甸','Montenegro':'黑山','Mongolia':'蒙古','Mozambique':'莫桑比克','Mauritania':'毛里塔尼亚','Malawi':'马拉维','Malaysia':'马来西亚','Namibia':'纳米比亚','New Caledonia':'新喀里多尼亚','Niger':'尼日尔','Nigeria':'尼日利亚','Nicaragua':'尼加拉瓜','Netherlands':'荷兰','Norway':'挪威','Nepal':'尼泊尔','New Zealand':'新西兰','Oman':'阿曼','Pakistan':'巴基斯坦','Panama':'巴拿马','Peru':'秘鲁','Philippines':'菲律宾','Papua New Guinea':'巴布亚新几内亚','Poland':'波兰','Puerto Rico':'波多黎各','Dem. Rep. Korea':'朝鲜','Portugal':'葡萄牙','Paraguay':'巴拉圭','Qatar':'卡塔尔','Romania':'罗马尼亚','Russia':'俄罗斯','Rwanda':'卢旺达','W. Sahara':'西撒哈拉','Saudi Arabia':'沙特阿拉伯','Sudan':'苏丹','S. Sudan':'南苏丹','Senegal':'塞内加尔','Solomon Is.':'所罗门群岛','Sierra Leone':'塞拉利昂','El Salvador':'萨尔瓦多','Somaliland':'索马里兰','Somalia':'索马里','Serbia':'塞尔维亚','Suriname':'苏里南','Slovakia':'斯洛伐克','Slovenia':'斯洛文尼亚','Sweden':'瑞典','Swaziland':'斯威士兰','Syria':'叙利亚','Chad':'乍得','Togo':'多哥','Thailand':'泰国','Tajikistan':'塔吉克斯坦','Turkmenistan':'土库曼斯坦','East Timor':'东帝汶','Trinidad and Tobago':'特里尼达和多巴哥','Tunisia':'突尼斯','Turkey':'土耳其','Tanzania':'坦桑尼亚','Uganda':'乌干达','Ukraine':'乌克兰','Uruguay':'乌拉圭','United States':'美国','Uzbekistan':'乌兹别克斯坦','Venezuela':'委内瑞拉','Vietnam':'越南','Vanuatu':'瓦努阿图','West Bank':'西岸','Yemen':'也门','South Africa':'南非','Zambia':'赞比亚','Zimbabwe':'津巴布韦'}
map = Map().add(series_name='世界疫情分布',data_pair=data_list,maptype='world',name_map=nameMap,is_map_symbol_show=False
)
map.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
map.render('世界疫情分布情况3.html')# 作者:丹成学长 q746876041

4.4 全国疫情实时追踪

全国疫情实时追踪页面,支持折线图、条形图、扇形图、地图热力图展示,图表由Echarts实现,支持左上角侧边栏跳转。

在这里插入图片描述
在这里插入图片描述

4.6 其他页面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5 关键代码

两个数据表

CREATE TABLE `history` (`ds` datetime NOT NULL COMMENT '日期',`confirm` int(11) DEFAULT NULL COMMENT '累计确诊',`confirm_add` int(11) DEFAULT NULL COMMENT '当日新增确诊',`suspect` int(11) DEFAULT NULL COMMENT '剩余疑似',`suspect_add` int(11) DEFAULT NULL COMMENT '当日新增疑似',`heal` int(11) DEFAULT NULL COMMENT '累计治愈',`heal_add` int(11) DEFAULT NULL COMMENT '当日新增治愈',`dead` int(11) DEFAULT NULL COMMENT '累计死亡',`dead_add` int(11) DEFAULT NULL COMMENT '当日新增死亡',PRIMARY KEY (`ds`) USING BTREE) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;CREATE TABLE `details` (`id` int(11) NOT NULL AUTO_INCREMENT,`update_time` datetime DEFAULT NULL COMMENT '数据最后更新时间',`province` varchar(50) DEFAULT NULL COMMENT '省',`city` varchar(50) DEFAULT NULL COMMENT '市',`confirm` int(11) DEFAULT NULL COMMENT '累计确诊',`confirm_add` int(11) DEFAULT NULL COMMENT '新增治愈',`heal` int(11) DEFAULT NULL COMMENT '累计治愈',`dead` int(11) DEFAULT NULL COMMENT '累计死亡',PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;import requestsimport jsonimport timeimport pymysql#返回历史数据和当日详细数据def get_tencent_data():url1 = "https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5"url2 = "https://view.inews.qq.com/g2/getOnsInfo?name=disease_other"headers = {'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.70 Safari/537.36'}r1 = requests.get(url1, headers)r2 = requests.get(url2, headers)#json字符串转字典res1 = json.loads(r1.text)res2 = json.loads(r2.text)data_all1 = json.loads(res1["data"])data_all2 = json.loads(res2["data"])#历史数据history = {}for i in data_all2["chinaDayList"]:ds = "2020." + i["date"]tup = time.strptime(ds, "%Y.%m.%d")  # 匹配时间ds = time.strftime("%Y-%m-%d", tup)  #改变时间输入格式,不然插入数据库会报错,数据库是datatime格式confirm = i["confirm"]suspect = i["suspect"]heal = i["heal"]dead = i["dead"]history[ds] = {"confirm": confirm, "suspect": suspect, "heal": heal, "dead": dead}for i in data_all2["chinaDayAddList"]:ds = "2020." + i["date"]tup = time.strptime(ds, "%Y.%m.%d")  # 匹配时间ds = time.strftime("%Y-%m-%d", tup)  #改变时间输入格式,不然插入数据库会报错,数据库是datatime格式confirm = i["confirm"]suspect = i["suspect"]heal = i["heal"]dead = i["dead"]history[ds].update({"confirm_add": confirm, "suspect_add": suspect, "heal_add": heal, "dead_add": dead})#当日详细数据details = []update_time = data_all1["lastUpdateTime"]data_country = data_all1["areaTree"]  #list 25个国家data_province = data_country[0]["children"] #中国各省for pro_infos in data_province:province = pro_infos["name"] #省名for city_infos in pro_infos["children"]:city = city_infos["name"]confirm = city_infos["total"]["confirm"]confirm_add = city_infos["today"]["confirm"]heal = city_infos["total"]["heal"]dead = city_infos["total"]["dead"]details.append([update_time, province, city, confirm, confirm_add, heal, dead])return history, detailsdef get_conn():#建立连接conn = pymysql.connect(host="127.0.0.1", user="root", password="*", db="cov", charset="utf8")#创建游标cursor = conn.cursor()return conn,cursordef close_conn(conn,cursor):if cursor:cursor.close()if conn:conn.close()#插入details数据def update_details():cursor = Noneconn = Nonetry:li = get_tencent_data()[1] #0是历史数据,1是当日详细数据conn,cursor = get_conn()sql = "insert into details(update_time,province,city,confirm,confirm_add,heal,dead) values(%s,%s,%s,%s,%s,%s,%s)"sql_query = "select %s=(select update_time from details order by id desc limit 1)"  #对比当前最大时间戳#对比当前最大时间戳cursor.execute(sql_query,li[0][0])if not cursor.fetchone()[0]:print(f"{time.asctime()}开始更新数据")for item in li:cursor.execute(sql,item)conn.commit()print(f"{time.asctime()}更新到最新数据")else:print(f"{time.asctime()}已是最新数据!")except:traceback.print_exc()finally:close_conn(conn,cursor)#插入history数据def insert_history():cursor = Noneconn = Nonetry:dic = get_tencent_data()[0]#0代表历史数据字典print(f"{time.asctime()}开始插入历史数据")conn,cursor = get_conn()sql = "insert into history values (%s,%s,%s,%s,%s,%s,%s,%s,%s)"for k,v in dic.items():cursor.execute(sql,[k, v.get("confirm"),v.get("confirm_add"),v.get("suspect"),v.get("suspect_add"),v.get("heal"),v.get("heal_add"),v.get("dead"),v.get("dead_add")])conn.commit()print(f"{time.asctime()}插入历史数据完毕")except:traceback.print_exc()finally:close_conn(conn,cursor)#更新历史数据def update_history():cursor = Noneconn = Nonetry:dic = get_tencent_data()[0]#0代表历史数据字典print(f"{time.asctime()}开始更新历史数据")conn,cursor = get_conn()sql = "insert into history values (%s,%s,%s,%s,%s,%s,%s,%s,%s)"sql_query = "select confirm from history where ds=%s"for k,v in dic.items():if not cursor.execute(sql_query,k):cursor.execute(sql,[k, v.get("confirm"),v.get("confirm_add"),v.get("suspect"),v.get("suspect_add"),v.get("heal"),v.get("heal_add"),v.get("dead"),v.get("dead_add")])conn.commit()print(f"{time.asctime()}历史数据更新完毕")except:traceback.print_exc()finally:close_conn(conn,cursor)insert_history()update_details()

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/695450.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

oppo手机如何录屏?解锁录屏新功能!

“最近换了一款oppo手机,感觉它的拍照功能真的很强大。但除此之外,我发现oppo还有许多隐藏功能,比如录屏。但我尝试了很久,都没找到录屏的开关在哪里。有没有哪位oppo用户知道怎么打开这个功能呢?” 随着科技的不断发…

Nexus 仓库

一、仓库介绍 1.仓库类型 proxy:是远程仓库的代理。比如说在nexus中配置了一个central repository的proxy,当用户向这个proxy请求一个artifact,这个proxy就会先在本地查找,如果找不到的话,就会从远程仓库下载&#x…

小迪安全29WEB 攻防-通用漏洞SQL 注入增删改查盲注延时布尔报错

#知识点: 1、明确查询方式注入 Payload 2、明确查询方式注入产生功能 3、明确 SQL 盲注延时&布尔&报错 #详细点: 盲注就是在注入过程中,获取的数据不能回显至前端页面。 也就是在代码中无echo将sql结果输出出来 此时&#…

详解 IT/OT 融合的五层架构(从PLC/SCADA到MES/ERP)

作为一个电气自动化的从业者,有必要搞懂下面术语的意思。 IT:Information Technology的缩写,指信息技术; OT:Operational Technology的缩写,指操作层面的技术,比如运营技术;CT&…

⭐北邮复试刷题LCR 037. 行星碰撞__栈 (力扣119经典题变种挑战)

LCR 037. 行星碰撞 给定一个整数数组 asteroids,表示在同一行的小行星。 对于数组中的每一个元素,其绝对值表示小行星的大小,正负表示小行星的移动方向(正表示向右移动,负表示向左移动)。每一颗小行星以相…

VirtualPainting:新一代多传感器融合方案,大幅提升3D目标检测性能

论文标题:VirtualPainting: Addressing Sparsity with Virtual Points and Distance-Aware Data Augmentation for 3D Object Detection 论文作者:Sudip Dhakal, Dominic Carrillo, Deyuan Qu, Michael Nutt, Qing Yang, Song Fu 导读: 本文…

后端程序员入门react笔记——react的diff算法(三)

diffing算法 虚拟dom 我们知道,react里面操作的都是虚拟dom,最后经过render渲染为真正的dom,那么为什么要提出虚拟dom这个概念呢?其实就是将逻辑和视图区分开,react的虚拟dom,就相当于mvc的c,…

【自然语言处理】:实验5,司法阅读理解

清华大学驭风计划课程链接 学堂在线 - 精品在线课程学习平台 (xuetangx.com) 代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主 有任何疑问或者问题,也欢…

激光条纹中心线提取算法FPGA实现方案

1 概述 激光条纹中心线提取是3D线激光测量领域一个较为基础且重要的算法。目前,激光条纹中心线提取已有多种成熟的算法,有很多相关的博客和论文。 激光条纹中心线提取的真实意义在于工程化和产品化的实际应用,而很多算法目前只能用于学术研究…

五、分类算法 总结

代码: from sklearn.datasets import load_iris, fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.naive_bayes import MultinomialNB from s…

括号匹配(终极版)(典型栈的运用的题目,值得一看)

括号匹配时运用栈的一个典型例子,它是充分利用了栈先进后出的特性,在这之前,我们先来看一个简单的题目 括号匹配1 Description 输入一串带括号的表达式,判断输入的表达式是否合理。即判断括号是否匹配。为了简化题目&#xff0…

代码随想录KamaCoder46. 携带研究材料(第六期模拟笔试)

题目&#xff1a; 代码(首刷看解析 2024年2月22日&#xff09;&#xff1a; #include<vector> #include<iostream> using namespace std; int Pacakge(vector<int>& a,vector<int>& weights, vector<int>& values) {int M a[0];//…

ElasticSearch语法

Elasticsearch 概念 入门学习: Index索引>MySQL 里的表(table)建表、增删改查(查询需要花费的学习时间最多)用客户端去调用 ElasticSearch(3 种)语法:SQL、代码的方法(4 种语法) ES 相比于 MySQL&#xff0c;能够自动帮我们做分词&#xff0c;能够非常高效、灵活地查询内…

【快速上手QT】04-定时器Timer

先来个小示例 我们先简单的来触发一下定时器。 #include "Zhetu.h"#include <qdebug.h>void Zhetu::timerEvent(QTimerEvent* event) { //定时器触发函数qDebug() << "Hello world"; }Zhetu::Zhetu(QWidget *parent): QMainWindow(parent){t…

C#,数值计算,矩阵的乔莱斯基分解(Cholesky decomposition)算法与源代码

一、安德烈路易斯乔尔斯基 安德烈路易斯乔尔斯基出生于法国波尔多以北的查伦特斯海域的蒙古扬。他在波尔多参加了Lyce e&#xff0c;并于1892年11月14日获得学士学位的第一部分&#xff0c;于1893年7月24日获得第二部分。1895年10月15日&#xff0c;乔尔斯基进入莱科尔理工学院…

PhotoSweeper X mac版 v4.8.5 相似重复照片清理工具 兼容 M1/M2

PhotoSweeper X for Mac是一款Mac重复照片/相似照片清理工具&#xff01;PhotoSweeper可以帮你进行&#xff1a;重复相似照片/数码相片查找、对比和删除&#xff0c;轻松清理Mac上的重复图片&#xff0c;非常实用。 应用介绍 PhotoSweeper X for Mac是一款Mac重复照片/相似照片…

实战打靶集锦-025-HackInOS

文章目录 1. 主机发现2. 端口扫描3. 服务枚举4. 服务探查5. 提权5.1 枚举系统信息5.2 探索一下passwd5.3 枚举可执行文件5.4 查看capabilities位5.5 目录探索5.6 枚举定时任务5.7 Linpeas提权 靶机地址&#xff1a;https://download.vulnhub.com/hackinos/HackInOS.ova 1. 主机…

【图片公式识别】图片公式转Word与LaTeX文档:智能识别与转换

前言 嘿&#xff0c;大家好呀&#xff01;&#x1f44b; 谁都知道&#xff0c;写 Word 文档里的公式可不是一件简单的事情&#xff01;你辛辛苦苦在键盘上敲出的数学公式&#xff0c;结果随着 Word 版本的更新&#xff0c;竟然变成了一张图片&#xff01;&#x1f624; 这简直就…

板块一 Servlet编程:第八节 文件上传下载操作 来自【汤米尼克的JavaEE全套教程专栏】

板块一 Servlet编程&#xff1a;第八节 文件的上传下载操作 一、文件上传&#xff08;1&#xff09;前端内容&#xff08;2&#xff09;后端内容 二、文件下载&#xff08;1&#xff09;前端的超链接下载&#xff08;2&#xff09;后端下载 在之前的内容中我们终于结束了Servle…