电化学仿真技术通过对电池微观行为进行研究,明晰电池内部多现象机理,并将其数值化,通过数值法实现对物理特征联合计算,建立完整的电池模型。COMSOL Multiphysics 具有强大的多物理场全耦合仿真分析功能、高效的计算性能,可以保证数值仿真的高度精确
燃料电池主要讲解燃料电池仿真应用,以燃料电池仿真、多孔电极模型、尘气输运模型、纽扣电池模型、连接体模型、直接碳燃料电池模型( 传质-导电-电化学-热多场耦合 )以及应力分析为例,带大家掌握 COMSOL 仿真从简到真的燃料电池建模方法。
锂离子电池仿真应用,带大家一步步实操学习锂离子电池 P2D 模型、锂离子电池-热耦合模型、锂离子电池衰退模型及仿真,动力电池风冷、液冷模型构建等。
通过多个模块场景案例的应用讲解,了解借助 COMSOL 在理想或多物理场环境下建模、分析、评估、预测燃料电池、锂离子电池、锂金属电池、电解加工、电化学加工等行业中涉及器件的性能的方法,使设计满足当前和未来发展。
适合各省市、自治区从事电力工业、材料科学、无机化工、汽车工业、自动化技术及能源等事业单位技术骨干、科研院所、高校相关专业的在校硕士、博士研究生以及广大爱好者
COMSOL 多物理场耦合仿真技术与应用- - 燃料电池
COMSOL 仿真基础
1 1 、L COMSOL 软件基本操作
1.1 创建模型一般步骤
1.2 几何创建方法
1.3 网格划分技巧
1.4 方程及边界设置
2 2 、后处理
2.1 数据集创建
2.2 衍生量的计算
2.3 结果图的绘制
实例操作:肋片散热模型,化整为零式网格划分模型
COMSOL 燃料电池仿真
3 3 、燃料电池仿真
3.1 燃料电池开路电压计算
3.2 燃料电池三种极化损失
4 4 、多孔电极有效扩散系数构建
4.1 多孔电极构建方法
4.2 曲率与孔隙率关系
4.3 尘气模型实现方法
实例操作:多孔电极模型、尘气输运模型
5 5 、从简到真的建模方法
5.1 只考虑气体输运
5.2 添加导电过程
5.3 添加电化学过程
5.4 添加退化过程
实例操作:纽扣电池模型,退化模型
6 6 、连接体研究分析
6.1 燃料电池活化设置方法
6.2 传质-导电-电化学多场耦合方法
6.3 传热-传质-动量-导电-电化学多场耦合
6.4 连接体优化与设计
实例操作:连接体优化模型、新型连接体模
7 7 、积碳研究
7.1 燃料电池边界设置
7.2 传质-导电-电化学多场耦合方法
7.3 甲烷内重整反应设置
7.4 甲醇内重整反应设置
7.5 积碳分析
实例操作:甲烷积碳模型,甲醇积碳模型
8 、直接碳燃料电池性能研究
8.1 Boudouard 反应设置
8.2 热源设置方法
8.3 传质-导电-电化学-热多场耦合方法
8.4 性能分析
实例操作:直接碳燃料电池模型
9 、应力分析
9.1 力学边界设置
9.2 损伤几率求解
9.3 残余应力分析
9.4 热应力分析
实例操作:微管应力模型
COMSOL 多物理场耦合仿真技术与应用- - 锂离子电池
-
COMSOL 仿真基础
1.1 数值仿真基本要素及其在 COMSOL 中的对应
1.1.1 模型参数与变量
1.1.2 物理场添加及电解条件设置
1.1.3 模型构建与网格划分
1.1.4 求解器类型与设置
1.1.5 后处理及数据分析
1.2 COMSOL 中锂离子电池接口介绍
1.2.1 电池基本物理过程及控制方程
1.2.2 常用电池边界条件及初始条件
1.2.3 常用电池电极材料参数设置 -
锂离子电池 P2D 模型
2.1 P2D 模型的理解与分析
2.2 COMSOL 中电池 P2D 模型构建
2.2.1 模型参数输入
2.2.2 模型构建及模型材料设置
2.2.3 电池物理方程及参数设置
2.2.4 网格划分与求解器设置
2.3 电池典型充放电过程仿真及后处理
-
锂离子电池电化学-热耦合模型
3.1 P2D 电化学模型与电池热模型耦合
3.2 电池集总参数模型及其与电池热模型耦合
3.3 两种电池电(化学)-热耦合模型的区别及应用场景
3.4 圆柱形或方形锂离子电池建模及仿真演示 (二选一)
-
锂离子电池衰退模型及仿真
4.1 COMSOL 中电池充放电循环仿真
4.1.1 电池充放电循环边界条件设置
4.1.2 电池加速衰退设置
4.1.3 电池充放电循环仿真后处理技巧
4.2 锂离子电池常见衰退现象及其数学描述
4.2.1 负极 SEI 膜增厚过程仿真
4.2.2 活性锂损失计算
4.3 锂离子电池衰退模型构建及仿真演示
-
动力电池热管理技术及数值仿真
5.1 热管理技术简述
5.2 动力电池风冷及模型构建
5.2.1 空气流动过程仿真及常用物理接口介绍
5.2.2 锂离子电池-空气流动耦合模型构建
5.2.3 典型工况电池空冷模型构建及仿真演示
5.3 动力电池液冷及模型构建
5.3.1 液气流动过程仿真及常用物理接口介绍
5.3.2 锂离子电池-冷却液流动耦合模型构建
5.3.3 典型工况电池液冷模型构建及仿真演示
6 锂金属电沉积过程数值模拟
6.1 锂金属电沉积涉及的物理接口简介
6.1.1 一次、二次和三次电流分布接口
6.1.2 稀溶液理论与浓溶液理论
6.2 锂硫电池模型构建
6.3 锂离子电池异构模型
6.3.1 电池异构模型的意义
6.3.2 电池异构模型构建