计算机设计大赛 深度学习人体跌倒检测 -yolo 机器视觉 opencv python

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的人体跌倒检测算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1.前言

人体跌倒是人们日常生活中常见姿态之一,且跌倒的发生具有随机、难以预测的特点;其次,跌倒会给人体造成不同程度的伤害,很多人跌倒后由于得不到及时的救助而加重受到的伤害,甚至出现残疾或者死亡的情况;同时随着人口老龄化问题的日渐加剧,跌倒已经成为了我国65周岁以上老人受伤致死的主要原因。因此,跌倒事件严重影响着人们的身体健康,跌倒检测具有十分重要的研究意义。

2.实现效果

跌倒效果

在这里插入图片描述

站立、蹲坐效果

在这里插入图片描述

在这里插入图片描述

3.相关技术原理

3.1卷积神经网络

简介

CNN 是目前机器用来识别物体的图像处理器。CNN
已成为当今自动驾驶汽车、石油勘探和聚变能研究领域的眼睛。在医学成像方面,它们可以帮助更快速发现疾病并挽救生命。得益于 CNN 和递归神经网络
(RNN),各种 AI 驱动型机器都具备了像我们眼睛一样的能力。经过在深度神经网络领域数十年的发展以及在处理海量数据的 GPU
高性能计算方面的长足进步,大部分 AI 应用都已成为可能。

原理

人工神经网络是一个硬件和/或软件系统,模仿神经元在人类大脑中的运转方式。卷积神经网络 (CNN)
通常会在多个全连接或池化的卷积层中应用多层感知器(对视觉输入内容进行分类的算法)的变体。

CNN
的学习方式与人类相同。人类出生时并不知道猫或鸟长什么样。随着我们长大成熟,我们学到了某些形状和颜色对应某些元素,而这些元素共同构成了一种元素。学习了爪子和喙的样子后,我们就能更好地区分猫和鸟。

神经网络的工作原理基本也是这样。通过处理标记图像的训练集,机器能够学习识别元素,即图像中对象的特征。

CNN
是颇受欢迎的深度学习算法类型之一。卷积是将滤波器应用于输入内容的简单过程,会带来以数值形式表示的激活。通过对图像反复应用同一滤波器,会生成名为特征图的激活图。这表示检测到的特征的位置和强度。

卷积是一种线性运算,需要将一组权重与输入相乘,以生成称为滤波器的二维权重数组。如果调整滤波器以检测输入中的特定特征类型,则在整个输入图像中重复使用该滤波器可以发现图像中任意位置的特征。

在这里插入图片描述

关键代码

基于tensorflow的代码实现

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data_bak/', one_hot=True)sess = tf.InteractiveSession()# 截断的正太分布噪声,标准差设为0.1def weight_variable(shape):initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)# 卷积层和池化层也是接下来要重复使用的,因此也为它们定义创建函数# tf.nn.conv2d是TensorFlow中的2维卷积函数,参数中x是输入,W是卷积的参数,比如[5, 5, 1, 32]# 前面两个数字代表卷积核的尺寸,第三个数字代表有多少个channel,因为我们只有灰度单色,所以是1,如果是彩色的RGB图片,这里是3# 最后代表核的数量,也就是这个卷积层会提取多少类的特征# Strides代表卷积模板移动的步长,都是1代表会不遗漏地划过图片的每一个点!Padding代表边界的处理方式,这里的SAME代表给# 边界加上Padding让卷积的输出和输入保持同样SAME的尺寸def conv2d(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')# tf.nn.max_pool是TensorFlow中的最大池化函数,我们这里使用2*2的最大池化,即将2*2的像素块降为1*1的像素# 最大池化会保留原始像素块中灰度值最高的那一个像素,即保留最显著的特征,因为希望整体上缩小图片尺寸,因此池化层# strides也设为横竖两个方向以2为步长。如果步长还是1,那么我们会得到一个尺寸不变的图片def max_pool_2x2(x):return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')# 因为卷积神经网络会利用到空间结构信息,因此需要将1D的输入向量转为2D的图片结构,即从1*784的形式转为原始的28*28的结构
# 同时因为只有一个颜色通道,故最终尺寸为[-1, 28, 28, 1],前面的-1代表样本数量不固定,最后的1代表颜色通道数量
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])# 定义我的第一个卷积层,我们先使用前面写好的函数进行参数初始化,包括weights和bias,这里的[5, 5, 1, 32]代表卷积
# 核尺寸为5*5,1个颜色通道,32个不同的卷积核,然后使用conv2d函数进行卷积操作,并加上偏置项,接着再使用ReLU激活函数进行
# 非线性处理,最后,使用最大池化函数max_pool_2*2对卷积的输出结果进行池化操作
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)# 第二层和第一个一样,但是卷积核变成了64
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)# 因为前面经历了两次步长为2*2的最大池化,所以边长已经只有1/4了,图片尺寸由28*28变成了7*7
# 而第二个卷积层的卷积核数量为64,其输出的tensor尺寸即为7*7*64
# 我们使用tf.reshape函数对第二个卷积层的输出tensor进行变形,将其转成1D的向量
# 然后连接一个全连接层,隐含节点为1024,并使用ReLU激活函数
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)# 防止过拟合,使用Dropout层
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)# 接 Softmax分类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)# 定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

3.1YOLOV5简介

基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。

YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

在这里插入图片描述

模型结构图如下:

在这里插入图片描述

3.2 YOLOv5s 模型算法流程和原理

YOLOv5s模型主要算法工作流程原理:

(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。

(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。

(3) 颈部层应用路径聚合网络[22](path-aggregation network, PANet)和CSP2_X进行特征融合。

(4) 使用GIOU_Loss作为损失函数。

关键代码:

4.数据集处理

获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

3.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

3.2 数据保存

点击save,保存txt。

在这里插入图片描述

5.模型训练

配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

在这里插入图片描述

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

在这里插入图片描述

目前支持的模型种类如下所示:

在这里插入图片描述

训练

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/692841.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P6354 [COCI2007-2008#3] TAJNA

题目传送门 题目描述 使用一种加密算法。 设字符串的长度为 n,则构造一个矩阵,使得 rcn 且在 r≤c 的情况下使得 r 尽量大。 然后把给定的明文按照由上到下,从左到右的顺序填充这个 rc 的矩阵。 得到的密文就是把矩阵按照从左到右&#…

内存计算研究进展- 针对图计算的近数据计算架构

针对图计算的近数据计算架构的代表性工作有: Seoul National University的 Tesseract和 Georgia Institute of Technology 的 GraphPIM,具体如下。 1 Tesseract Tesseract是一个针对图计算的可编程的内存计算系统架构,它综合了图计算的特点&…

VMware的三种连接模式

桥接模式 就是将主机网卡与虚拟机虚拟的网卡利用虚拟网桥进行通信。在桥接的作用下,类似于把物理主机虚拟为一个交换机,所有桥接设置的虚拟机连接到这个交换机的一个接口上,物理主机也同样插在这个交换机当中,所以所有桥接下的网…

weblog项目开发记录--SpringBoot后端工程骨架

知识点查漏补缺 跟着犬小哈做项目实战时发现好多知识点都忘了,还有一些小的知识点可能之前没学过,记录下!顺带整理下开发流程。 完整项目学习见犬小哈实战专栏 SpringBoot后端工程骨架 搭建好的工程骨架中实现了很多基础功能,…

如何在同一个module里面集成多个数据库的多张表数据

确保本公司数据安全,通常对数据的管理采取很多措施进行隔离访问。 但是,Mendix应怎样访问散布于异地的多个数据库呢? 前几期我们介绍过出海跨境的大企业对于Mendix的技术、人才的诉求后,陆陆续续有其他客户希望更聚焦具体的实际场…

量子计算:数据安全难题

当今数字技术面临的最大挑战之一是安全系统和数据。为此,人们设计了复杂的算法来加密数据并通过称为对称加密的框架来保护数据。虽然这已被证明是成功的,但量子计算的进步(利用量子力学比传统计算机更快地解决复杂问题)可能会彻底…

【Pytorch 基础教程2】10分钟掌握Tensor基础 VSCode +Pytorch配置

Pytorch 基础教程 02 Tensor PyTorch 作为Numpy的代替品,可以使用GPU的强大计算能力 提供最大的灵活性和告诉的深度学习研究平台 这里补充上实验环境调试:第一次使用VS Code可以参考:PyTorch(超详细)部署与激活 举起Py…

优先队列C

由于看到P1629 邮递员送信这题,就去学了优先队列.为学习Dijkstra算法做准备 什么是优先队列 优先队列:是一种特殊类型的队列,每个元素都有一个相关的优先级。在优先队列中,元素按照优先级的顺序进行排列,具有最高(或最低&#x…

Prometheus 教程

目录 一、简介二、下载安装1、安装 prometheus2、安装 alertmanager3、安装 grafana4、安装 node_exporter5、安装 mysqld_exporter 一、简介 Prometheus 是一个开源的系统监控和警报工具。它最初由 SoundCloud 开发,并于 2012 年发布为开源项目。Prometheus 专注于…

利用vite快速搭建vue3项目

1、选择一个文件夹,在vscode终端打开,输入命令【npm create vitelatest】 npm create vitelatest 2、提示你输入项目名称之后,我这里设置的是【rookiedemo】 3、回车之后,出现选择框架的提示,我们选择【vue】回车 4、…

js中使用for in注意事项,key的类型为string类型

for in是一个非常实用的存在,既可以遍历数组,又可以遍历对象,所以我一般都是会用来遍历可迭代的数据,遍历数组和对象的时候,要注意使用万能遍历方式: const users [1, 3, 45, 6]// const users {// 1…

Polyspace静态检测步骤

Polyspace 是一个代码静态分析和验证的工具,隶属于MATLAB,用于检测代码中的错误和缺陷,包括内存泄漏、数组越界、空指针引用等。帮助开发团队提高代码质量,减少软件开发过程中的错误和风险。 1、打开MATLAB R2018b 2、找到Polys…

AR智能眼镜主板硬件设计_AR眼镜光学方案

AR眼镜凭借其通过导航、游戏、聊天、翻译、音乐、电影和拍照等交互方式,将现实与虚拟进行无缝融合的特点,实现了更加沉浸式的体验。然而,要让AR眼镜真正成为便捷实用的智能设备,需要解决一系列技术难题,如显示、散热、…

Stable Diffusion 绘画入门教程(webui)-图生图

通过之前的文章相信大家对文生图已经不陌生了,那么图生图是干啥的呢? 简单理解就是根据我们给出的图片做为参考进行生成图片。 一、能干啥 这里举两个例子 1、二次元头像 真人转二次元,或者二次元转真人都行, 下图为真人转二次…

小清新卡通人物404错误页面源码

小清新卡通人物404错误页面源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果,也可以上传到服务器里面,重定向这个界面 蓝奏云:https://wfr.lanzout.com/i6XbU1olftde

二叉树(6)——二叉树的创建和销毁

1 二叉树的创建 整体思路 将数组里的元素一直分为根,左子树,右子树,遇到#就返回NULL,链接到上层递归的左子树或者右子树,一定要把一个节点的左子树全部递归完才能返回到右子树。这种方法也可以scanf一个数组里的元素&…

Spring Boot项目怎么对System.setProperty(key, value)设置的属性进行读取加解密

一、前言 之前我写过一篇文章使用SM4国密加密算法对Spring Boot项目数据库连接信息以及yaml文件配置属性进行加密配置(读取时自动解密),对Spring Boot项目的属性读取时进行加解密,但是没有说明对System.setProperty(key, value)设…

Docker Compose映射卷的作用是什么,dockerfile这个文件有什么区别和联系?

Docker Compose中映射卷(Volumes)的作用和Dockerfile之间既有区别也有联系。下面详细解释两者的作用、区别和联系: Docker Compose映射卷的作用 在Docker Compose中,卷(Volumes)用于数据持久化和数据共享…

【实战 JS逆向+python模拟获取+Redis token会话更新】实战模拟测试 某巴批发网 仅供学习

逆向日期:2024.02.20 使用工具:Node.js、python、Redis 加密方法:md5标准库 文章全程已做去敏处理!!! 【需要做的可联系我】 AES解密处理(直接解密即可)(crypto-js.js 标…

day07-实战-今日指数

今日指数-day07 1.股票Code联想推荐 1.1 股票Code联想推荐功能介绍 1) 原型效果 输入框输入股票编码后,显示关联的股票信息; 2)接口定义说明 接口说明: 功能描述:根据输入的个股代码,进行模糊查询,返…