2023年高教社杯 国赛数学建模思路 - 案例:感知机原理剖析及实现

文章目录

  • 1 感知机的直观理解
    • 2 感知机的数学角度
    • 3 代码实现
  • 4 建模资料

# 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 感知机的直观理解

感知机应该属于机器学习算法中最简单的一种算法,其原理可以看下图:

在这里插入图片描述

比如说我们有一个坐标轴(图中的黑色线),横的为x1轴,竖的x2轴。图中的每一个点都是由(x1,x2)决定的。如果我们将这张图应用在判断零件是否合格上,x1表示零件长度,x2表示零件质量,坐标轴表示零件的均值长度和均值重量,并且蓝色的为合格产品,黄色为劣质产品,需要剔除。那么很显然如果零件的长度和重量都大于均值,说明这个零件是合格的。也就是在第一象限的所有蓝色点。反之如果两项都小于均值,就是劣质的,比如在第三象限的黄色点。

在预测上很简单,拿到一个新的零件,我们测出它的长度x1,质量x2,如果两项都大于均值,说明零件合格。这就是我们人的人工智能。

那么程序怎么知道长度重量都大于均值的零件就是合格的呢?
或者说

它是怎么学会这个规则的呢?
程序拿到手的是当前图里所有点的信息以及标签,也就是说它知道所有样本x的坐标为(x1, x2),同时它属于蓝色或黄色。对于目前手里的这些点,要是能找到一条直线把它们分开就好了,这样我拿到一个新的零件,知道了它的质量和重量,我就可以判断它在线的哪一侧,就可以知道它可能属于好的或坏的零件了。例如图里的黄、蓝、粉三条线,都可以完美地把当前的两种情况划分开。甚至x1坐标轴或x2坐标轴都能成为一个划分直线(这两个直线均能把所有点正确地分开)。

读者也看到了,对于图中的两堆点,我们有无数条直线可以将其划分开,事实上我们不光要能划分当前的点,当新来的点进来是,也要能很好地将其划分,所以哪条线最好呢?

怎样一条直线属于最佳的划分直线?实际上感知机无法找到一条最佳的直线,它找到的可能是图中所有画出来的线,只要能把所有的点都分开就好了。

得出结论:
如果一条直线能够不分错一个点,那就是一条好的直线
进一步来说:

如果我们把所有分错的点和直线的距离求和,让这段求和的举例最小(最好是0,这样就表示没有分错的点了),这条直线就是我们要找的。

2 感知机的数学角度

首先我们确定一下终极目标:甭管找最佳划分直线啥中间乱七八糟的步骤,反正最后生成一个函数f(x),当我们把新的一个数据x扔进函数以后,它会预测告诉我这是蓝的还是黄的,多简单啊。所以我们不要去考虑中间过程,先把结果定了。

在这里插入图片描述

瞧,f(x)不是出来了嘛,sign是啥?wx+b是啥?别着急,我们再看一下sigin函数是什么。

在这里插入图片描述

sign好像很简单,当x大于等于0,sign输出1,否则输出-1。那么往前递归一下,wx+b如果大于等于0,f(x)就等于1,反之f(x)等于-1。

那么wx+b是啥?
它就是那条最优的直线。我们把这个公式放在二维情况下看,二维中的直线是这样定义的:y=ax+b。在二维中,w就是a,b还是b。所以wx+b是一条直线(比如说本文最开始那张图中的蓝线)。如果新的点x在蓝线左侧,那么wx+b<0,再经过sign,最后f输出-1,如果在右侧,输出1。等等,好像有点说不通,把情况等价到二维平面中,y=ax+b,只要点在x轴上方,甭管点在线的左侧右侧,最后结果都是大于0啊,这个值得正负跟线有啥关系?emmm….其实wx+b和ax+b表现直线的形式一样,但是又稍有差别。我们把最前头的图逆时针旋转45度,蓝线是不是变成x轴了?哈哈这样是不是原先蓝线的右侧变成了x轴的上方了?其实感知机在计算wx+b这条线的时候,已经在暗地里进行了转换,使得用于划分的直线变成x轴,左右侧分别为x轴的上方和下方,也就成了正和负。

那么,为啥是wx+b,而不叫ax+b?
在本文中使用零件作为例子,上文使用了长度和重量(x1,x2)来表示一个零件的属性,所以一个二维平面就足够,那么如果零件的品质和色泽也有关系呢?那就得加一个x3表示色泽,样本的属性就变成了(x1,x2,x3),变成三维了。wx+b并不是只用于二维情况,在三维这种情况下,仍然可以使用这个公式。所以wx+b与ax+b只是在二维上近似一致,实际上是不同的东西。在三维中wx+b是啥?我们想象屋子里一个角落有蓝点,一个角落有黄点,还用一条直线的话,显然是不够的,需要一个平面!所以在三维中,wx+b是一个平面!至于为什么,后文会详细说明。四维呢?emmm…好像没法描述是个什么东西可以把四维空间分开,但是对于四维来说,应该会存在一个东西像一把刀一样把四维空间切成两半。能切成两半,应该是一个对于四维来说是个平面的东西,就像对于三维来说切割它的是一个二维的平面,二维来说是一个一维的平面。总之四维中wx+b可以表示为一个相对于四维来说是个平面的东西,然后把四维空间一切为二,我们给它取名叫超平面。由此引申,在高维空间中,wx+b是一个划分超平面,这也就是它正式的名字。

正式来说:
wx+b是一个n维空间中的超平面S,其中w是超平面的法向量,b是超平面的截距,这个超平面将特征空间划分成两部分,位于两部分的点分别被分为正负两类,所以,超平面S称为分离超平面。

细节:

w是超平面的法向量:对于一个平面来说w就是这么定义的,是数学知识,可以谷歌补习一下

b是超平面的截距:可以按照二维中的ax+b理解

特征空间:也就是整个n维空间,样本的每个属性都叫一个特征,特征空间的意思是在这个空间中可以找到样本所有的属性组合

在这里插入图片描述
我们从最初的要求有个f(x),引申到能只输出1和-1的sign(x),再到现在的wx+b,看起来越来越简单了,只要能找到最合适的wx+b,就能完成感知机的搭建了。前文说过,让误分类的点距离和最大化来找这个超平面,首先我们要放出单独计算一个点与超平面之间距离的公式,这样才能将所有的点的距离公式求出来对不?

在这里插入图片描述

先看wx+b,在二维空间中,我们可以认为它是一条直线,同时因为做过转换,整张图旋转后wx+b是x轴,那么所有点到x轴的距离其实就是wx+b的值对不?当然了,考虑到x轴下方的点,得加上绝对值->|wx+b|,求所有误分类点的距离和,也就是求|wx+b|的总和,让它最小化。很简单啊,把w和b等比例缩小就好啦,比如说w改为0.5w,b改为0.5b,线还是那条线,但是值缩小两倍啦!你还不满意?我可以接着缩!缩到0去!所以啊,我们要加点约束,让整个式子除以w的模长。啥意思?就是w不管怎么样,要除以它的单位长度。如果我w和b等比例缩小,那||w||也会等比例缩小,值一动不动,很稳。没有除以模长之前,|wx+b|叫函数间隔,除模长之后叫几何间隔,几何间隔可以认为是物理意义上的实际长度,管你怎么放大缩小,你物理距离就那样,不可能改个数就变。在机器学习中求距离时,通常是使用几何间隔的,否则无法求出解。

在这里插入图片描述
对于误分类的数据,例如实际应该属于蓝色的点(线的右侧,y>0),但实际上预测出来是在左侧(wx+b<0),那就是分错了,结果是负,这时候再加个符号,结果就是正了,再除以w的模长,就是单个误分类的点到超平面的举例。举例总和就是所有误分类的点相加。

上图最后说不考虑除以模长,就变成了函数间隔,为什么可以这么做呢?不考虑wb等比例缩小这件事了吗?上文说的是错的吗?

有一种解释是这样说的:感知机是误分类驱动的算法,它的终极目标是没有误分类的点,如果没有误分类的点,总和距离就变成了0,w和b值怎样都没用。所以几何间隔和函数间隔在感知机的应用上没有差别,为了计算简单,使用函数间隔。

在这里插入图片描述
以上是损失函数的正式定义,在求得划分超平面的终极目标就是让损失函数最小化,如果是0的话就相当完美了。
在这里插入图片描述

感知机使用梯度下降方法求得w和b的最优解,从而得到划分超平面wx+b,关于梯度下降及其中的步长受篇幅所限可以自行谷歌。

3 代码实现

#coding=utf-8
#Author:Dodo
#Date:2018-11-15
#Email:lvtengchao@pku.edu.cn
'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
------------------------------
运行结果:
正确率:81.72%(二分类)
运行时长:78.6s
'''
import numpy as np
import time
def loadData(fileName):'''加载Mnist数据集:param fileName:要加载的数据集路径:return: list形式的数据集及标记'''print('start to read data')# 存放数据及标记的listdataArr = []; labelArr = []# 打开文件fr = open(fileName, 'r')# 将文件按行读取for line in fr.readlines():# 对每一行数据按切割福','进行切割,返回字段列表curLine = line.strip().split(',')# Mnsit有0-9是个标记,由于是二分类任务,所以将>=5的作为1,<5为-1if int(curLine[0]) >= 5:labelArr.append(1)else:labelArr.append(-1)#存放标记#[int(num) for num in curLine[1:]] -> 遍历每一行中除了以第一哥元素(标记)外将所有元素转换成int类型#[int(num)/255 for num in curLine[1:]] -> 将所有数据除255归一化(非必须步骤,可以不归一化)dataArr.append([int(num)/255 for num in curLine[1:]])#返回data和labelreturn dataArr, labelArr
def perceptron(dataArr, labelArr, iter=50):'''感知器训练过程:param dataArr:训练集的数据 (list):param labelArr: 训练集的标签(list):param iter: 迭代次数,默认50:return: 训练好的w和b'''print('start to trans')#将数据转换成矩阵形式(在机器学习中因为通常都是向量的运算,转换称矩阵形式方便运算)#转换后的数据中每一个样本的向量都是横向的dataMat = np.mat(dataArr)#将标签转换成矩阵,之后转置(.T为转置)。#转置是因为在运算中需要单独取label中的某一个元素,如果是1xN的矩阵的话,无法用label[i]的方式读取#对于只有1xN的label可以不转换成矩阵,直接label[i]即可,这里转换是为了格式上的统一labelMat = np.mat(labelArr).T#获取数据矩阵的大小,为m*nm, n = np.shape(dataMat)#创建初始权重w,初始值全为0。#np.shape(dataMat)的返回值为m,n -> np.shape(dataMat)[1])的值即为n,与#样本长度保持一致w = np.zeros((1, np.shape(dataMat)[1]))#初始化偏置b为0b = 0#初始化步长,也就是梯度下降过程中的n,控制梯度下降速率h = 0.0001#进行iter次迭代计算for k in range(iter):#对于每一个样本进行梯度下降#李航书中在2.3.1开头部分使用的梯度下降,是全部样本都算一遍以后,统一#进行一次梯度下降#在2.3.1的后半部分可以看到(例如公式2.6 2.7),求和符号没有了,此时用#的是随机梯度下降,即计算一个样本就针对该样本进行一次梯度下降。#两者的差异各有千秋,但较为常用的是随机梯度下降。for i in range(m):#获取当前样本的向量xi = dataMat[i]#获取当前样本所对应的标签yi = labelMat[i]#判断是否是误分类样本#误分类样本特诊为: -yi(w*xi+b)>=0,详细可参考书中2.2.2小节#在书的公式中写的是>0,实际上如果=0,说明改点在超平面上,也是不正确的if -1 * yi * (w * xi.T + b) >= 0:#对于误分类样本,进行梯度下降,更新w和bw = w + h *  yi * xib = b + h * yi#打印训练进度print('Round %d:%d training' % (k, iter))#返回训练完的w、breturn w, b
def test(dataArr, labelArr, w, b):'''测试准确率:param dataArr:测试集:param labelArr: 测试集标签:param w: 训练获得的权重w:param b: 训练获得的偏置b:return: 正确率'''print('start to test')#将数据集转换为矩阵形式方便运算dataMat = np.mat(dataArr)#将label转换为矩阵并转置,详细信息参考上文perceptron中#对于这部分的解说labelMat = np.mat(labelArr).T#获取测试数据集矩阵的大小m, n = np.shape(dataMat)#错误样本数计数errorCnt = 0#遍历所有测试样本for i in range(m):#获得单个样本向量xi = dataMat[i]#获得该样本标记yi = labelMat[i]#获得运算结果result = -1 * yi * (w * xi.T + b)#如果-yi(w*xi+b)>=0,说明该样本被误分类,错误样本数加一if result >= 0: errorCnt += 1#正确率 = 1 - (样本分类错误数 / 样本总数)accruRate = 1 - (errorCnt / m)#返回正确率return accruRate
if __name__ == '__main__':#获取当前时间#在文末同样获取当前时间,两时间差即为程序运行时间start = time.time()#获取训练集及标签trainData, trainLabel = loadData('../Mnist/mnist_train.csv')#获取测试集及标签testData, testLabel = loadData('../Mnist/mnist_test.csv')#训练获得权重w, b = perceptron(trainData, trainLabel, iter = 30)#进行测试,获得正确率accruRate = test(testData, testLabel, w, b)#获取当前时间,作为结束时间end = time.time()#显示正确率print('accuracy rate is:', accruRate)#显示用时时长print('time span:', end - start)

4 建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/69233.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用Qt自制一个小闹钟

小闹钟 功能 当按下启动按钮时&#xff0c;停止按钮可用&#xff0c;启动按钮不可用&#xff0c;闹钟无法设置&#xff0c;无法输入自定义内容 当按下停止按钮时&#xff0c;暂停播报&#xff0c;启动按钮可用&#xff0c;闹钟可以设置&#xff0c;可以输入自定义内容 .pro文…

分布式环境集成JWT(Java Web Token)

目录 一&#xff0c;说明&#xff1a;二&#xff0c;Token、Session和Cookie比较三&#xff0c;Spring Boot项目集成JWT1&#xff0c;引入依赖2&#xff0c;Token工具类3&#xff0c;定义拦截器4&#xff0c;注册拦截器5&#xff0c;编写登录代码6&#xff0c;测试 四&#xff…

Vue 2 nextTick方法|异步更新|事件循环

1 nextTick的用处 vm.$netTick的作用是将回调延迟到下次DOM更新周期之后执行。 它接受一个回调函数作为参数。 其实&#xff0c;在我们更新数据状态后&#xff0c;是不会立马渲染的&#xff0c;你不能即刻获取到新的DOM&#xff1a; <!DOCTYPE html> <html><…

[论文笔记]ESIM

引言 这是经典论文Enhanced LSTM for Natural Language Inference的笔记。 本篇论文文是建立在自然语言推理(Natural Language Inference,NLI)任务上的。提出了简单的通过基于LSTM的序列推理模型效果到达了当时的SOTA水平。同时基于该模型,在局部推理建模层和推理组合层使用了…

嵌入式岗位笔试面试专栏 - 岗位介绍

文章目录 一、嵌入式岗位的分类二、热门领域及公司三、发展前景四、技能要求沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇我们将讲解嵌入岗位的工作职责 。 一、嵌入式岗位的分类 嵌入式软件工程师大致可以分为两种类型: 应用开发工程师驱动开发工程师应用工程…

安全基础 --- 原型链污染

原型链 大部分面向对象的编程语言&#xff0c;都是通过“类”&#xff08;class&#xff09;实现对象的继承。传统上&#xff0c;JavaScript 语言的继承不通过 class&#xff0c;而是通过“原型对象”&#xff08;prototype&#xff09;实现 1、prototype 属性的作用 JavaScri…

蝶形运算法

蝶形运算法是一种基于FFT&#xff08;Fast Fourier Transform&#xff09;算法的计算方法&#xff0c;其基本思想是将长度为N的DFT分解成若干个长度为N/2的DFT计算&#xff0c;并通过不断的合并操作得到最终的结果。该算法也称为“蝴蝶算法”&#xff0c;因为它的计算过程中需要…

Git 版本回退 超神步骤

Git 版本回退 一. 背景 多版本分支开发&#xff0c;合并版本问题太多&#xff0c;需要回滚到某次版本。我的git客服端工具是 sourcetree 二.操作步骤 2.1 切到当前需要回退版本的分支 2.2 右击需要具体某一个分支&#xff0c;这个分支就是你想切到的分支版本&#xff0c;具体…

Spark 环境安装与案例演示

Spark 环境安装 一、准备工作 1、hadoop成功安装 2、防火墙关闭 二、解压安装 1、上传 spark 安装包到/tools 目录&#xff0c;进入 tools 下&#xff0c;执行如下命令&#xff1a; tar -zxvf spark-2.1.0-bin-hadoop2.7.tgz -C /training/由于 Spark 的脚本命令和 Hadoop…

12 最小覆盖串

最小覆盖串 题解1 滑窗双指针模板&#xff08;labuladong&#xff0c;高效好套&#xff0c;length版&#xff09; 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串&#xff0c;则返回空字符串 "&quo…

wpf从cs代码创建简单3D物体和3D Tools研究

前面已经说了&#xff0c;WPF项目中引入3DTools dll之后&#xff0c;在xaml中加入它的命名空间&#xff0c; xmlns:tools"clr-namespace:_3DTools;assembly3DTools" 把<Viewport3D>标签包含在<tools:TrackballDecorator>标签之中&#xff0c;就可以用鼠…

ping: www.baidu.com: Name or service not known 写了DNS还是不行

环境描述&#xff1a;ESXI平台上&#xff0c;一台Centos7虚拟主机。 问题描述&#xff1a;平台上的其他的虚拟机可以正常ping通&#xff0c;就这台ping IP地址可以通&#xff0c;ping域名解析失败。 排查过程&#xff1a; 1、检查网卡配置文件和/etc/resolv.conf配置文件是否…

【SQL学习笔记】关系模型与查询和更新数据

一、关系模型 1.1 主键 主键是关系表中记录的唯一标识。主键的选取非常重要&#xff1a;主键不要带有业务含义&#xff0c;而应该使用BIGINT自增或者GUID类型。主键也不应该允许NULL。 可以使用多个列作为联合主键&#xff0c;但联合主键并不常用。 1.2 外键 FOREIGN KEY …

0010Java程序设计-springboot+vue影院售票系统设计与实现

摘 要目 录系统实现开发环境 摘 要 看电影已经成为了人们生活中不可缺少的一部分&#xff0c;电影院售票及管理系统是电影院的日常管理及售票任务的核心&#xff0c; 在电影院中&#xff0c; 工作人员并非只是放映电影&#xff0c; 还有诸如票房统计、影片放映、影片场次安排、…

PE文件格式详解

摘要 本文描述了Windows系统的PE文件格式。 PE文件格式简介 PE&#xff08;Portable Executable&#xff09;文件格式是一种Windows操作系统下的可执行文件格式。PE文件格式是由Microsoft基于COFF&#xff08;Common Object File Format&#xff09;格式所定义的&#xff0c…

淘宝数据库,主键如何设计的?

聊一个实际问题&#xff1a;淘宝的数据库&#xff0c;主键是如何设计的&#xff1f; 某些错的离谱的答案还在网上年复一年的流传着&#xff0c;甚至还成为了所谓的 MySQL 军规。其中&#xff0c;一个最明显的错误就是关于MySQL 的主键设计。 大部分人的回答如此自信&#xff…

论文阅读_大模型_ToolLLM

英文名称: ToolLLM: Facilitating Large Language Models to Master 16000 Real-world APIs 中文名称: TOOLLLM&#xff1a;帮助大语言模型掌握16000多个真实世界的API 文章: http://arxiv.org/abs/2307.16789 代码: https://github.com/OpenBMB/ToolBench 作者: Yujia Qin 日期…

保姆级 C++ 学习路线

上周有小伙伴留言求安排一手C/C学习路线&#xff0c;这周一份保姆级的C语言安排上&#xff01; 以前就写过C语言的学习路线&#xff1a;可能是北半球最好的零基础C语言学习路线&#xff0c;这次把C的学习路线也安排上&#xff0c;专门花了一个多月写了这篇学习路线&#xff0c;…

[Linux]编写一个极简版的shell(版本1)

[Linux]编写一个极简版的shell-version1 文章目录 [Linux]编写一个极简版的shell-version1命令行提示符打印接收命令行参数将命令行参数进行解释执行用户命令完整代码 本文能够帮助Linux系统学习者通过代码的角度更好地理解命令行解释器的实现原理。 命令行提示符打印 Linux操…

常用命令之mysql命令之show命令

一、mysql show命令简介 mysql数据库中show命令是一个非常实用的命令&#xff0c;SHOW命令用于显示MySQL数据库中的信息。它可以用于显示数据库、表、列、索引和用户等各种对象的信息。我们常用的有show databases&#xff0c;show tables&#xff0c;show full processlist等&…