面试经典150题——生命游戏

​"Push yourself, because no one else is going to do it for you." - Unknown

green and beige trees beside mountains

1. 题目描述

image-20240220081712337

2.  题目分析与解析

2.1 思路一——暴力求解

之所以先暴力求解,是因为我开始也没什么更好的思路,所以就先写一种解决方案,没准写着写着就来新的灵感了。暴力求解思路还是很简单的,就是尝试遍历面板的每个格子,判断其周围八个位置的状态(对于边角需要特殊处理),根据边角种存在的活细胞(也就是1的个数)判断该位置应该填什么。

image-20240220083947669

但是需要注意一点,为了避免我们在原矩阵上更改值后导致影响后续的判断,所以我们肯定需要先复制一个原始矩阵。

代码思路:

  1. 初始化,复制一个原始矩阵

  2. 遍历复制矩阵的每一个元素,查看其周围八个位置的状态,统计1的个数

    • 根据题目提到的判定规则:少于 2 个或者大于 3 个 1 就判定当前位置为 0

    • 等于 2 个 1 那么当前位置不需要更改

    • 如果等于 3 个 1 那么当前位置如果为 0 需要改为 1

    • 对于边角位置需要额外处理防止越界

2.2 思路二——进阶(原地算法)

image-20240220091111379

根据题目中的进阶提示,要求使用原地算法,也就是不能用一个额外的面板存储现有的值,并且还提示了所有格子被同时更新。因此我们再想一想怎么解决。

如果使用原地算法,最主要的问题就是对于前面内容的更新会影响后面的结果,因为你不知道原来前面的内容是什么样子。但是记住,原始状态只有两种,要么是0,要么是1

而变化也只有四种

  1. 要么原来是0,后来变成1

  2. 要么原来是0,保持不变为0

  3. 要么原来是1,后来变成0

  4. 要么原来是1,后来不变为1

如下图:

image-20240220095252280

因为我们担心原始信息被覆盖,因此我们是不是可以添加几个数字也就相当于几种状态,来存储这些被覆盖的信息?这样我们看见某一个数字就知道它之前是什么状态,就相当于在原始数据的基础上进行操作了!在这里我们假设:

  • 用 0 和 1 还是表示原来是什么现在就是什么的情况,也就是对应上图中两种不变的情况

  • 而用数字2表示 0 改变为 1

  • 用数字3表示 1 改变为 0

作图表示如下:

image-20240220095719264

对于这种原地算法,如果你需要用到之前的信息,但是可能之前的信息会被修改,就想办法把原始信息用一种方式存储起来。

因此我们在遍历面板的每一个元素时,我们就知道之前的位置原始数据是什么,这样就能正确计算结果,等到最后我们再根据每一种数字的情况将它归为正确的表示,比如最后我们处理完了所有数据,然后我们再遍历每个元素:

  • 发现值为0或者1就不动

  • 发现值为2就变为1

  • 发现值为3就变为0

这样就可以得到最终结果!

代码思路:

  1. 遍历面板每一个元素,根据原始状态和需要改变为的值确定该位置的值

    • 对于面板每一个元素,遇见周围八个位置中有1和3就把它当作1

    • 对于面板每一个元素,遇见周围八个位置中有2和0就把它当作0

  2. 处理完每个元素后再次遍历整个面板,将1与3替换回正确的值

2.3 思路三——思路一的优化(位运算)

现在我们看看还有没有什么优化空间,有时间提示信息不是白给的哦:

image-20240220101521308

题目提示我们board[i][j]01,0和1,有没有想到什么?学计算机的0和1分别表示什么?在java中int是怎么存储的?

再看看面板的大小?1 <= m, n <= 25,在联想一下int的存储大小:

在不同编程语言中,int 类型的大小可以有所不同。以下是一些常见编程语言中 int 类型的大小:

  1. C/C++:

    • 根据编译器和操作系统的不同,int 类型通常为 4 字节,范围大约是 -2,147,483,648 到 2,147,483,647。

  2. Java:

    • Java 中的 int 类型固定为 4 字节,范围是 -2,147,483,648 到 2,147,483,647。

  3. Python:

    • Python 中的 int 类型大小是动态的,它可以根据需要自动调整。在 32 位系统上,通常为 4 字节,范围约为 -2,147,483,648 到 2,147,483,647;在 64 位系统上,它可以是 4 字节或 8 字节,取决于所使用的 Python 版本。

  4. JavaScript:

    • JavaScript 中的 int 类型实际上是一个 64 位浮点数,范围大约是 -9,007,199,254,740,992 到 9,007,199,254,740,992。

  5. Swift:

    • Swift 中的 Int 类型的大小取决于当前平台的位数。在 32 位平台上,Int 是 32 位,范围大约是 -2,147,483,648 到 2,147,483,647;在 64 位平台上,Int 是 64 位,范围大约是 -9,223,372,036,854,775,808 到 9,223,372,036,854,775,807。

可以看到在大多数情况下至少是按照4字节存储的,也就是32位,而一位可以表示0或者1两个数,联想到这里是不是又有了一种思路?我们是不是可以按照思路一的解决方案,虽然我们copy了一个原始面板,但是我们面板的每一个值都是一个int,如果我们把面板的一行设置位一个int来存储,通过位运算来求解,是不是能省好多空间?

所以代码思路还是思路一的代码思路,但是我们此时需要使用位运算来解决!

image-20240220103459533

如上图,红色部分就相当于我们的面板。

代码思路:

  1. 设置一个和board数组一样行数的int数组命名位copy,每一个int值表示board的每一行

  2. 初始化,采用位运算初始化copy数组

  3. 遍历复制矩阵的每一个元素,查看其周围八个位置的状态,统计1的个数

    • 根据题目提到的判定规则:少于 2 个或者大于 3 个 1 就判定当前位置为 0

    • 等于 2 个 1 那么当前位置不需要更改

    • 如果等于 3 个 1 那么当前位置如果为 0 需要改为 1

    • 对于边角位置需要额外处理防止越界

2.4 思路四——压榨空间到极致

既然我们已经完成了思路三的代码,我想大家应该更清楚位运算的特点。这时我们再看看面板,面板中每一个位置是不是一个int值?那就是32位(假设java在通常情况下),而面板中的值0或者1肯定只用了最后一位,就像下面这样:

image-20240220110246948

是不是这么多位置都空着想不想做点什么?空着的就是空间啊,由于1 <= m, n <= 25,那么是不是我们就可以用每一行的行首元素来当作我们思路三的copy数组,还是进行位运算操作,但是就不需要额外的空间了。

思路和思路三相似,但是唯一的改变就是我们将copy数组放在了board面板的每一行行行首位置而已。

比如对于题目中的示例:

image-20240220111548507

将它放大看就是这样:

image-20240220111513793

其中蓝色部分就是我们充当copy数组的位置。

比如对于题目中的

image-20240220120145685

它转化后的结果位:

image-20240220120156004

对应的二进制位为:

  1. 1073741824 is represented as 01000000000000000000000000000000

  2. 536870912 is represented as 00100000000000000000000000000000

  3. -536870911 is represented as 11100000000000000000000000000001

  4. 0 is represented as 00000000000000000000000000000000

代码思路

  1. 初始化,采用位运算初始化copy数组(实际上就是board的第一个元素的相应位)

  2. 遍历复制矩阵的每一个元素,查看其周围八个位置的状态,统计1的个数

    • 根据题目提到的判定规则:少于 2 个或者大于 3 个 1 就判定当前位置为 0

    • 等于 2 个 1 那么当前位置不需要更改

    • 如果等于 3 个 1 那么当前位置如果为 0 需要改为 1

    • 对于边角位置需要额外处理防止越界

  3. 最后需要更新第一列恢复为原来的值

2.5 思路五——压榨空间到极致2

改代码是看了自在飞花的解释学到的,确实很厉害,因为他写的c++版本,我在这解释一下核心思想,并写一个java版本。

这段代码的核心思路是两遍扫描棋盘:

  1. 第一遍扫描,计算每个细胞周围活细胞的数量,并用第二个比特位来存储细胞是否应该存活。由于细胞的状态是用0(死)和1(活)来表示的,所以作者通过按位与操作&1来获取当前细胞的状态,也就是只取int的最后一位,也就是0或者1,仅累加最低位,来计算周围的存活细胞个数。

  2. 第二遍扫描,通过右移操作>>= 1来更新细胞的状态。这是因为在第一遍扫描中,如果一个细胞在下一代应该是活的,那么它的第二个比特位将被设置为1。通过右移一位,我们可以用这个第二比特位来覆盖原来的状态,从而更新棋盘。

image-20240220123044821

  1. 同时在代码中使用了两个数组dx和dy,他们用来表示周围的八个位置,减少了遍历周围八个位置的for循环造成变量k或者l的重复开辟空间。

这个代码我就直接附在这里了:

image-20240220130355283

image-20240220130141640

其实效果和思路四差不多,但是思路值得借鉴。

补充

count的优化

如果还想继续优化还是有优化空间的,比如我们的count作为一个计数变量,是可以放在某一个board元素里面的,因为它的最大值不会超过8,因为周围最多也就八个元素。这样用一个3个bit就可以存储起来。

dx和dy优化

同时dx和dy也可以优化,因为dx和dy的范围就是在-1到1之间,因此可以用两个bit来存储一个值,dx和dy总共有8组,也就是16个元素,那么用32个bit就可以存储所有的dx和dy。

当然上面的优化有点太疯狂了,但是我们要举一反三想到这些思路。

3. 代码实现

3.1 思路一——暴力求解

image-20240220091018158

3.2 思路二——原地算法

image-20240220101059273

image-20240220100955856

3.3 思路三——优化(位运算)

image-20240220105056115

在Java中,表达式 (copy[k] & (1 << (31 - l))) 并不直接结果为0或1,而是执行了一个按位与(&)操作,这个操作的结果取决于copy[k]在指定位上的值。这里的操作细节如下:

  • 1 << (31 - l):这部分是位移操作。它将数字1向左移动(31 - l)位。这意味着,如果l为0,那么1将被移动到最高位(假设是32位整数),如果l是其他值,1就会被移动到相应的位置上。这样做的目的是为了生成一个只在特定位置上有一个1的整数,其他位置都是0。

  • copy[k] & (1 << (31 - l)):这部分是按位与操作。它比较copy[k]和上面计算出的数值,在每个位上进行逻辑与操作。只有当copy[k]在相应的位上也是1时,这个操作的结果在那个位上才是1,否则结果为0。因此,这个表达式的结果是一个整数,它在大多数位上都是0,在特定的位上可能是0或者是2的某次幂(取决于l的值)。如果你想判断这个操作的结果是否为非零(即判断copy[k]在(31 - l)位上是否为1),你可以将整个表达式与0进行比较:

<span style="background-color:#f8f8f8"><span style="color:#008855">boolean</span> <span style="color:#000000">isBitSet</span> <span style="color:#981a1a">=</span><span style="color:#777777"> (</span><span style="color:#000000">copy</span><span style="color:#777777">[</span><span style="color:#000000">k</span><span style="color:#777777">] </span><span style="color:#981a1a">&</span> <span style="color:#777777">(</span><span style="color:#116644">1 << </span><span style="color:#777777">(</span><span style="color:#116644">31</span> <span style="color:#981a1a">-</span> <span style="color:#000000">l</span><span style="color:#777777">))) </span><span style="color:#981a1a">!=</span> <span style="color:#116644">0</span><span style="color:#777777">;</span></span>

如果你的目的是确保结果严格为0或1,你需要进一步处理这个表达式,例如通过判断表达式是否非零来将结果转换为0或1:

<span style="color:#777777"><span style="background-color:#f8f8f8"><span style="color:#008855">int</span> <span style="color:#000000">bitValue</span> <span style="color:#981a1a">=</span> (<span style="color:#000000">copy</span>[<span style="color:#000000">k</span>] <span style="color:#981a1a">&</span> (<span style="color:#116644">1</span> << (<span style="color:#116644">31</span> <span style="color:#981a1a">-</span> <span style="color:#000000">l</span>))) <span style="color:#981a1a">!=</span> <span style="color:#116644">0</span> <span style="color:#981a1a">?</span> <span style="color:#116644">1</span> : <span style="color:#116644">0</span>;</span></span>

这样,bitValue就会根据copy[k]在(31 - l)位上是否为1来分别存储1或0。

image-20240220105038951

3.4 思路四——位运算,但是copy存储在board数组中

image-20240220120852378

image-20240220120827412

4. 相关复杂度分析

解法一:额外的复制矩阵

时间复杂度:O(MN),其中M是行数,N是列数。因为需要遍历整个矩阵两次,一次复制,一次计算。空间复杂度:O(MN),因为需要一个同样大小的矩阵来存储复制。

解法二:原地修改

时间复杂度:O(M*N),同样需要遍历整个矩阵来计算周围活细胞的数量。空间复杂度:O(1),除了原数组外,没有使用额外的空间,只是利用了额外的状态来标记中间状态。

解法三:位运算

时间复杂度:O(M*N),需要遍历整个矩阵来计算。空间复杂度:O(M),虽然没有使用额外的矩阵,但是使用了一个数组来存储行的状态。

解法四:位运算,但是copy存储在board数组中

时间复杂度:O(M*N),遍历整个矩阵。空间复杂度:O(1),所有操作都在原地完成,没有使用额外的存储空间。

解法五:位运算,将结果存储在每个元素的左边一位

时间复杂度:O(M*N),需要遍历整个矩阵来计算。空间复杂度:O(1),所有操作都在原地完成,没有使用额外的存储空间。

在上述解法中,除了第一种解法需要和原矩阵一样的额外空间,第三种解法使用了一个数组来存储行的状态,其他方法都采取了原地算法,即在原数组上直接修改,大大节约了空间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/691656.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

22-k8s中pod的调度-亲和性affinity

一、概述 在k8s当中&#xff0c;“亲和性”分为三种&#xff0c;节点亲和性、pod亲和性、pod反亲和性&#xff1b; 亲和性分类名称解释说明nodeAffinity节点亲和性通过【节点】标签匹配&#xff0c;用于控制pod调度到哪些node节点上&#xff0c;以及不能调度到哪些node节点上&…

Linux-ls命令

目录 ls&#xff1a;查看目录下文件/文件夹 ls -l&#xff1a;列表显示文件 ls -a&#xff1a;显示所有文件正常情况下‘ . ’开头的文件是隐藏的 ls -la&#xff1a;以列表形式显示所有文件包括隐藏文件 ls -lt&#xff1a;按时间倒序查看文件 ls -R&#xff1a;递归方式…

【git 使用】超级好用的 git reset 和 git revert 功能对比和使用方法

首先你要知道 git 区分暂存区和工作区&#xff0c;如果你用过 sourcetree 你就会知道 git reset 超级好用 git reset 命令用于将当前分支的 HEAD 指针移动到指定的提交&#xff0c;并且可以选择性地修改工作区和暂存区的状态。git reset 命令有几种常用的用法&#xff0c;主要…

突破百度地图Web API的配额限制,实现接口调用自由!

声明 本文章中所有内容仅供学习交流,抓包内容、敏感网址、数据接口均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,若有侵权,请联系我立即删除! 引言 好久没用百度地图开放平台,最近发现平台调整了接口调用的策略,增加了实名认证,…

STM32 USART详细解读(理论知识)

文章目录 前言一、同步传输和异步传输二、UART协议三、UART硬件结构1.波特率&#xff0c;数据位&#xff0c;校验位&#xff0c;停止位设置2.数据发送流程3.数据接收流程4.中断控制 总结 前言 本篇文章来给大家讲解一下STM32中的USART&#xff0c;USART是STM32中非常重要的一个…

QT多线程应用及代码示例

一.多线程的原理和功能 1.多线程&#xff08;multithreading&#xff09;是指从软件或者硬件上实现多个线程并发执行的技术。 2.多线程的功能和作用主要包括&#xff1a; 提高程序的并发性和效率&#xff1a;多线程可以同时执行多个任务&#xff0c;不同的线程可以同时读写不…

腾讯云助力酒店IT系统上云,实现出海业务的双重优势

潮起潮涌&#xff0c;随着时代浪潮的翻涌&#xff0c;生活处处可见是巨大的变化&#xff0c;衣食住行都有了更多更大的需求&#xff0c;出门旅游观赏当地风景品尝特色美食的前提是要住好&#xff0c;只有休息好了才有更多的精力去游玩。酒店系统的升级上云让登记变得更加便捷&a…

【机器学习笔记】13 降维

降维概述 维数灾难 维数灾难(Curse of Dimensionality)&#xff1a;通常是指在涉及到向量的计算的问题中&#xff0c;随着维数的增加&#xff0c;计算量呈指数倍增长的一种现象。在很多机器学习问题中&#xff0c;训练集中的每条数据经常伴随着上千、甚至上万个特征。要处理这…

【Linux】git操作 - gitee

1.使用 git 命令行 安装 git yum install git 2.使用gitee 注册账户 工作台 - Gitee.com 进入gitee&#xff0c;根据提示注册并登录 新建仓库 仓库名称仓库简介初始换仓库 3.Linux-git操作 进入仓库&#xff0c;选择“克隆/下载” 复制下面的两行命令进行git配置 然后将仓库clo…

教师专业发展的五个阶段

每当人们谈论教师&#xff0c;总会联想到“传道授业解惑”的崇高形象。但教师的专业成长&#xff0c;绝非一蹴而就。今天&#xff0c;就让我们一起探秘教师专业发展的五个阶段&#xff0c;看看一位普通教师是如何历练成为教育行家的。 阶段一&#xff1a;新手摸索期 初入教育行…

走进科学系列之遭遇鬼打墙的OUTLOOK

网管小贾 / sysadm.cc 正值春运&#xff0c;车站里熙熙攘攘、人头攒动。 鲍勃和约瑟夫正在候车室&#xff0c;等待检票。 “嗨&#xff01;约瑟夫&#xff01;快来看看&#xff0c;我的电脑出问题了&#xff01;” “得了吧&#xff0c;马上就要检票上车了&#xff0c;你就不…

调用接口时不时出现 Error: socket hang up

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 今天采用golang创建了一个http服务&#xff0c;准备对若干接口进行测试。 问题描述 提示&#xff1a;这里描述项目中遇到的问题&#xff1a; 在测试第一个接口时&#xff0c;发现采用postman调用接口…

Ansible yum模块 主要用于软件安装

目录 选项 实例 安装一个tree实例卸载一个 tree 选项 name   #所安装的包的名称 state  #present—>安装&#xff0c; latest—>安装最新的, absent—> 卸载软件。 update_cache  #强制更新yum的缓存 conf_file  #指定远程yum安装时所依赖的配置文件&…

5G车载路由器引领无人驾驶车联网应用

随着无人驾驶技术的不断发展&#xff0c;车联网正逐渐成为实现智能交通的重要组成部分。5G车载路由器将在车联网的应用中起到至关重要的作用&#xff0c;它能够满足无人驾驶应用的低时延、高速率和实时控制等需求&#xff0c;进一步推动无人驾驶车联网技术。 5G路由器具备低时延…

从 AGP 4.1.2 到 7.5.1——XmlParser、GPathResult、QName 过时

新年首发&#xff0c; 去年的问题&#xff0c;今年解决~ 问题 & 排查 1: Task failed with an exception. ----------- * What went wrong: Execution failed for task :app:processCommonReleaseManifest. > org.xml.sax.SAXParseException; lineNumber: 1; columnNu…

【申请体验Sora】OpenAI Red Teaming Network application

网址&#xff1a;https://openai.com/form/red-teaming-network 使用Gmail &#xff0c; 国家选美国 两个问题&#xff1a; Why are you interested in joining the OpenAI Red Teaming Network? I’m eager to experience the powerful allure of Sora, which I believe wi…

postgresql 文件结构(一) 数据库、表对应的文件

1、问题 甲方要求提供数据库数据量大小&#xff0c;由于各个业务数据库共用一个postgres&#xff0c;因此想把每个数据库占用的空间都统计一下。 2、查找物理存储文件目录 如下图所示&#xff0c;可以查询表、库的物理存储文件名称 -- 查询表对应的文件 select oid,relname…

leetcode 01背包问题

典型的01背包问题可以暴力求解&#xff0c;直接将所有可能全部遍历然后挑选符合条件的即可&#xff0c;但这样时间复杂度过高&#xff0c;有2的n次方。 所以我们在这里采用动态规划的方式来做&#xff0c;并且&#xff0c;我们可以采用二维数组或者一维数组来做。 二维数组&a…

供水管网管道爆管事故发生原因及控制措施

经济的快速发展及城镇化的不断推进使得我国的城镇数量及规模都在不断地扩大。供水系统是城镇基础设施中 的重要的一环。现今在我国各城市中已经建立了相对完善的城市供水管网体系。但是在供水管网运行过程中爆管问题时 有发生&#xff0c;从而对城市用水的正常供应以及民众的正…

Redis 缓存(Cache)

什么是缓存 缓存(cache)是计算机中的一个经典的概念在很多场景中都会涉及到。 核心思路就是把一些常用的数据放到触手可及(访问速度更快)的地方&#xff0c;方便随时读取。 这里所说的“触手可及”是个相对的概念 我们知道&#xff0c;对于硬件的访问速度来说&#xff0c;通常…