助力智能化农田作物除草,基于轻量级YOLOv8n开发构建农田作物场景下玉米苗、杂草检测识别分析系统

在我们前面的系列博文中,关于田间作物场景下的作物、杂草检测已经有过相关的开发实践了,结合智能化的设备可以实现只能除草等操作,玉米作物场景下的杂草检测我们则少有涉及,这里本文的主要目的就是想要基于最新的YOLOv8下最轻量级的n系列的模型来开发构建玉米田间作物场景下的玉米苗和杂草检测识别系统。

首先看下实例效果:

简单看下实例数据集:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

YOLOv8官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型权重地址如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里给出yolov8的模型文件如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 3   # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

这里因为时间有限,暂时没有能够开发完成五款不同参数量级的模型来进行综合全面的对比分析,后面找时间再进行,这里选择的是YOLOv8下最为轻量级的n系列的模型,等待训练完成后我们来详细看下结果。

Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【训练可视化】

【Batch实例】

【离线推理实例】

感兴趣的话也都可以试试看!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv8n

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/690480.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

33、IO/标准IO对图片操作练习及文件IO相关练习20240219

一、使用fread和fwrite完成两个图片文件的拷贝&#xff08;标准IO&#xff09;。 代码&#xff1a; #include<myhead.h>int main(int argc, const char *argv[]) {FILE *srcfpNULL;FILE *destfpNULL;if((srcfpfopen("./hongfeng.bmp","r"))NULL ||…

哪个电商抠图软件比较好用?这些软件也太好用了吧

当需要从原始场景中分离图片中的对象时&#xff0c;抠图变得尤为关键。对于电商从业者而言&#xff0c;抠图是不可或缺的步骤。手动抠图耗时费力&#xff0c;而利用一键抠图软件可以显著提高工作效率和质量。然而&#xff0c;市场上有众多抠图软件&#xff0c;其中哪些是真正好…

【已解决】windeployqt.exe此应用无法在你电脑上运行

遇到这种问题时&#xff0c;通常网络会给出右击程序的兼容性或者以管理员命令行身份运行该程序。但是本文想要告诉的是这个windeployqt.exe出现此应用无法在你电脑上运行问题出现时&#xff0c;如何解决&#xff1f; 解决方案 笔者出现的问题是这个exe大小变成0kb所以无法打…

【详细流程】vue+Element UI项目中使用echarts绘制圆环图 折线图 饼图 柱状图

vueElement UI项目中数据分析功能需要用到圆环图 折线图 饼图 柱状图等&#xff0c;可视化图形分析 安装流程及示例 1.安装依赖 npm install echarts --save2.在main.js中引入并挂载echarts import echarts from echarts Vue.prototype.$echarts echarts3.在需要使用echart…

VMware还原Windows11 ghost镜像

文章目录 环境步骤准备制作启动iso文件创建虚拟机启动虚拟机还原Windows 参考 环境 Windows 11 家庭中文版VMware Workstation 17 Pro石大师装机大师Windows 11 ghost系统镜像 步骤 准备 下载好Windows 11 ghost系统镜像&#xff0c;我下载的文件是 FQ_WIN11_X64_VDL_V2080…

AMD FPGA设计优化宝典笔记(1)触发器

高亚军老师的这本书《AMD FPGA设计优化宝典》&#xff0c;他主要讲了两个东西&#xff1a; 第一个东西是代码的良好风格&#xff1b; 第二个是设计收敛等的本质。 这个书的结构是一个总论&#xff0c;加上另外的9个优化&#xff0c;包含的有&#xff1a;时钟网络、组合逻辑、触…

文件IO,目录IO的学习

一&#xff0c;头文件的添加 #ifndef _HEAD_H_ //防止重新定义宏 #define _HEAD_H_#include<stdio.h> #include<sys/stat.h> #include<sys/types.h> #include<fcntl.h> #include<unistd.h> #include<string.h>#endif…

Pytest自动化测试框架介绍

1、什么是单元测试框架 单元测试是指在软件开发当中&#xff0c;针对软件的最小单位&#xff08;函数&#xff0c;方法&#xff09;进行正确性的检查测试。 2、单元测试框架主要做什么 测试发现&#xff1a;从多个文件里面去找到我们需要的测试用例。 测试执行&#xff1a;按…

ThreadLocal “你”真的了解吗?

今天想梳理一个常见的面试题。在开始之前&#xff0c;让我们一起来回顾一下昨天的那篇文章——《Spring 事务原理总结七》。这篇文章比较啰嗦&#xff0c;层次也不太清晰&#xff0c;所以以后有机会我一定要重新整理一番。这篇文章主要想表达这样一个观点&#xff1a;Spring的嵌…

基于SpringBoot+Vue的零食零售管理系统

末尾获取源码作者介绍&#xff1a;大家好&#xff0c;我是墨韵&#xff0c;本人4年开发经验&#xff0c;专注定制项目开发 更多项目&#xff1a;CSDN主页YAML墨韵 学如逆水行舟&#xff0c;不进则退。学习如赶路&#xff0c;不能慢一步。 目录 一、项目简介 二、开发技术与环…

Rocky Linux 下载安装

一、VMware Workstation下载安装 1、安装教程 VMware Workstation下载安装&#xff08;含密钥&#xff09; 二、VMware Workstation 创建虚拟机 1、创建教程 VMware Workstation 创建虚拟机 三、Rocky Linux 下载 1、下载官网 RockyLinux.org 2、选择X86架构_64位系统_DVD镜…

部分回溯法题解

部分回溯法题解 一、22. 括号生成二、39. 组合总和 一、22. 括号生成 中 数字 n 代表生成括号的对数&#xff0c;请你设计一个函数&#xff0c;用于能够生成所有可能的并且 有效的 括号组合。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;[“((()))”,“(()())…

1.网络游戏逆向分析与漏洞攻防-游戏启动流程漏洞-测试需求与需求拆解

内容参考于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;分析接收到的对话数据包 这是一个新的篇章&#xff0c;之前是关于把我们的东西放进游戏里和内存里的数据分析与利用&#xff0c;现在是专注于网络部分&#xff0c;通过分析网络数据包得到应用程序中各…

Python安装GDAL库

目录 一、GDAL介绍 二、GDAL应用 三、python安装GDAL库 一、GDAL介绍 GDAL&#xff08;Geospatial Data Abstraction Library&#xff09;是一个在X/MIT许可协议下的开源栅格空间数据转换库。它利用抽象数据模型来表达所支持的各种文件格式&#xff0c;并且提供了一系列命令…

基于Spring Boot的智能物流管理系统,计算机毕业设计(带源码+论文)

源码获取地址&#xff1a; 码呢-一个专注于技术分享的博客平台一个专注于技术分享的博客平台,大家以共同学习,乐于分享,拥抱开源的价值观进行学习交流http://www.xmbiao.cn/resource-details/1759581137025445890

linux基础学习(10):基本权限与相关命令

1.基本权限 用ls -l查看当前目录文件时&#xff0c;可以看到文件的基本权限 其由10位组成&#xff0c;其中&#xff1a; 第1位&#xff1a;代表文件类型。 - d lbc普通文件目录文件软链接文件块设备文件&#xff0c;也就是硬盘等存储设备的文件字符设备文件&#xff0c;是鼠…

外包干了3个多月,技术退步明显。。。。

先说一下自己的情况&#xff0c;本科生&#xff0c;19年通过校招进入广州某软件公司&#xff0c;干了接近3年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…

代码随想录算法训练营29期|day54 任务以及具体安排

第九章 动态规划part11 123.买卖股票的最佳时机III // 版本一 class Solution {public int maxProfit(int[] prices) {int len prices.length;// 边界判断, 题目中 length > 1, 所以可省去if (prices.length 0) return 0;/** 定义 5 种状态:* 0: 没有操作, 1: 第一次买入…

OpenCV中图像的HSV色彩空间

在HSV 色彩空间中H, S, V 这三个通道分别代表着色相(Hue)&#xff0c;饱和度(Saturation)和明度(Value)&#xff0c; 原本输出的HSV 的取值范围分别是0-360, 0-1, 0-1; 但是为了匹配目标数据类型OpenCV 将每个通道的取值范围都做了修改,于是就变成了0-180, 0-255, 0-255 impo…

RabbitMQ保证消息的可靠性

1. 问题引入 消息从发送&#xff0c;到消费者接收&#xff0c;会经理多个过程&#xff1a; 其中的每一步都可能导致消息丢失&#xff0c;常见的丢失原因包括&#xff1a; 发送时丢失&#xff1a; 生产者发送的消息未送达exchange消息到达exchange后未到达queue MQ宕机&…