挑战杯 地铁大数据客流分析系统 设计与实现

文章目录

  • 1 前言
    • 1.1 实现目的
  • 2 数据集
    • 2.2 数据集概况
    • 2.3 数据字段
  • 3 实现效果
    • 3.1 地铁数据整体概况
    • 3.2 平均指标
    • 3.3 地铁2018年9月开通运营的线路
    • 3.4 客流量相关统计
      • 3.4.1 线路客流量排行
      • 3.4.2 站点客流量排行
      • 3.4.3 入站客流排行
      • 3.4.4 整体客流随时间变化趋势
      • 3.4.5 不同线路客流随时间变化
      • 3.4.6 不同线路的客流组成
    • 3.5 收入消费指标统计
      • 3.5.1 线路收入排行
      • 3.5.2 各个站点对线路收入的贡献
      • 3.5.3 不同消费金额次数占比
    • 3.6 完整乘车记录中客流统计
      • 3.6.1 数据过滤
      • 3.6.2 不同乘车区间客流量排行
      • 3.6.3 不同线路区间客流排行
    • 3.7 实时计算
      • 3.7.1 将站点客流数据写入 Hbase 中
      • 3.7.2 按照不同的业务场景从Hbase中读取数据
  • 4 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

地铁大数据客流分析系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1.1 实现目的

使用 Flink 完成数据清洗和聚合,使用 Elasticsearch + Kibana
的的技术路线,完成了客流信息,地铁收入、乘客车费、乘车区间和乘车时间的查询和可视化。

在此基础上,还使用 Flink 实现了计算各线路、站点和乘车区间的客流信息等实时计算功能,并将实时计算的结果写入到Hbase中,供下游业务查询使用。

2 数据集

2.2 数据集概况

  1. 数据集共用 1337000 条信息,其中包括 447708 条巴士的乘车信息和 781472 条地铁的出入站信息。巴士数据和地铁数据存在明显的不同:
  • 乘坐巴士只需要上车的时候刷卡,因此一条记录就是一次乘车记录
  • 而地铁在进出站时均需要刷卡,因此需要同时拥有一张交通卡的进出站记录才能构成一条完整的乘车记录
  1. 由于巴士的乘车记录比较简单,所有本项目中主要针对地铁的乘车记录进行计算和分析
  2. 地铁部分数据集的日期是北京时间 2018-09-01 05:00 ~ 2018-09-01-11:35

2.3 数据字段

在这里插入图片描述

3 实现效果

3.1 地铁数据整体概况

本项目只针对地铁的乘车记录进行分析,下面对数据集的整体概况做介绍,如图 1 所示,当日(2018-09-01 05:00 ~
2018-09-01-11:35)共计有 8 条线路的 170 个站点完成了 781472 人次的出入站,其中入站 415741 人次、出站 365731
人次,实际营业收入 1426697.15 元。因为不是一个完整的运营日所以出入站乘客人次并不相等。

在这里插入图片描述

3.2 平均指标

在这里插入图片描述

3.3 地铁2018年9月开通运营的线路

2018年9月该地区地铁共计有8条线路投入运行,分别是1号线、2号线、3号线、4号线、5号线、7号线、9号线、11号线,其具体线路图入下所示。

在这里插入图片描述

在这里插入图片描述

3.4 客流量相关统计

有关使用 Elasticsearch + Kibana实现数据可视化的具体细节。

3.4.1 线路客流量排行

如图所示是线路的客流排行榜,其中蓝色是入站客流,绿色是出站客流,根据图中信息可得到:

  • 总客流排名:5 号线、3 号线、1 号线、4 号线、2 号线、7 号线、11 号线、9 号线

  • 入站客流排名:5 号线、3 号线、1 号线、4 号线、7 号线、11 号线、9 号线、2 号线

  • 出站客流排名:1 号线、5 号线、3 号线、2 号线、4 号线、7 号线、11 号线、9 号线

在这里插入图片描述

3.4.2 站点客流量排行

总客流量的排行

从图站点总客流排行可以看出,五和、布吉站(深圳东火车站)、罗湖站(深圳火车站)、深圳北(深圳北高铁站)和民治分列前五,其中五和、布吉和民治入站客流明显多于出站客流,而罗湖站和深圳北则完全相反,这些车站基本都是不同线路的换乘车站。

在这里插入图片描述

3.4.3 入站客流排行

对于入站客流,五和、布吉(深圳东火车站)、丹竹头、民治和龙华分列前五

在这里插入图片描述

3.4.4 整体客流随时间变化趋势

从图 中可以看出,出入站客流随时间变化都出现了明显的高峰,但是具体来说又存在不同:

  • 入站客流的高峰在 08:30 附近,早于出站客流高峰的 08:45 附近
  • 在 08:37 之前入站的客流都是多于出站客流
  • 出站客流在 08:35-08:55 出现了大幅增加,这也与大部分公司固定的 9 点上班相吻合。
  • 整体来说入站客流的波动性没有出站客流那么剧烈,因为入站客流相对于地铁到站瞬间大量出站乘客来说相对更平稳没有那么明显的波峰出现。

在这里插入图片描述

3.4.5 不同线路客流随时间变化

由于图表篇幅的限制只显示客流量前四的线路。从图 2.8 中可以看出 地铁 5 号线、地铁 3 号线、地铁 1 号线在不同时间段客流量的变化较大,尤其是是 5
号线早高峰十分明显,由此推测人们的工作地点多集中在 5 号线附近,从客流量也可以佐证这个观点。

在这里插入图片描述

3.4.6 不同线路的客流组成

以客流量最多的五号线为例,从图 2.9 可以看出五和、深圳北、民治三个站点的客流分别占全线客流的 9.53 9.53% 9.53、 7.96 7.96%
7.96、 7.24 7.24% 7.24,同时这三个站的客流量也排名所以站点客流的第一、第四和第五位,右侧图例从上到下客流量依次减少。

在这里插入图片描述

3.5 收入消费指标统计

3.5.1 线路收入排行

从图 可以看出,虽然 1 号线的客流量只能排在 5 号线和 3 号线之后屈居第三,但是其线路的收入却排名第一。而客流量第四的 4 号线其收入只能排在第六位。

在这里插入图片描述

3.5.2 各个站点对线路收入的贡献

以收入最多的地铁 1 号线为例,罗湖站、会展中心站和桃园站对全线的收入贡献分列前三,而前海湾则是全线副班长贡献最少。右侧图例从上到下对线路收入贡献依次减少。

在这里插入图片描述

3.5.3 不同消费金额次数占比

从图中可以看出、实际消费金额为 2.85、1.9、4.75、3.8和5.7排名总消费次数的前五。

值得注意的是消费金额为0在总消费次数中的占比为 2.13 2.13%
2.13,这个一方面是深圳地铁确实对部分人群免费乘坐,另外一部分是有内部员工卡产生的。

在这里插入图片描述

3.6 完整乘车记录中客流统计

3.6.1 数据过滤

数据中存在大量的数据不能构成完整的情况,如

  • 对于一张卡只有入站或车站单条记录的显然不能构成一条完整的行程记录
  • 对于入站点和出现点相同的情况显然是不合理的数据,同样不能构成一条合理行程记录
  • 对于入站时间在 06:00 之前的记录同样不计算在内,因为深圳地铁的所有线路平均首班车时间在06:20左右,所以猜测可站点对外开放时间不会早于6:00。
  • 对于按照时间排序之后同一张卡出现,连续两次均为入站或出站的视为不合法数据

入站时间早于06:00和入站点出站点相同的数据

深圳地铁的运营时间都是 6 点以后,所以之前的数据记录,均有内部工作人员活所产生,视为无效数据如卡号为 HHJJAFGAH 的用户在同一条线路的同一站点产生的这 6 条数据,从实际消费金额为 0.0 也可以佐证此推论1535752434000,HHJJAFGAH,0.0,0.0,地铁入站,地铁二号线,0,大剧院,AGM-109,260036109  2018/9/1 5:53:541535752629000,HHJJAFGAH,2.0,0.0,地铁出站,地铁二号线,0,大剧院,AGM-117,260036117  2018/9/1 5:57:91535754065000,HHJJAFGAH,0.0,0.0,地铁入站,地铁二号线,0,大剧院,AGM-109,260036109  2018/9/1 6:21:51535754386000,HHJJAFGAH,2.0,0.0,地铁出站,地铁二号线,0,大剧院,AGM-117,260036117  2018/9/1 6:26:261535758541000,HHJJAFGAH,0.0,0.0,地铁入站,地铁二号线,0,大剧院,AGM-113,2600361131535758687000,HHJJAFGAH,2.0,0.0,地铁出站,地铁二号线,0,大剧院,AGM-105,260036105随然该持卡人极可能是内部用户,但是下面这条数据将被作为有效数据,因为乘车事件是真实发生的从大剧院 -> 晒布1535766418000,HHJJAFGAH,0.0,0.0,地铁入站,地铁二号线,0,大剧院,AGM-117,260036117  2018/9/1 9:46:581535767398000,HHJJAFGAH,2.0,0.0,地铁出站,地铁三号线,0,晒布,AGM-105,261013105    2018/9/1 10:3:18连续两次均为入站的数据1535755820000,CBCGDHCBB,0.0,0.0,地铁入站,地铁五号线,0,太安,AGT-118,2630351181535759424000,CBCGDHCBB,0.0,0.0,地铁入站,地铁四号线,0,清湖,AGM-105,2620111051535759862000,CBCGDHCBB,2.0,1.9,地铁出站,地铁四号线,0,清湖,AGM-108,2620111081535756340000,HHACJJFHE,0.0,0.0,地铁入站,地铁四号线,0,莲花北,AGM-109,2620201091535756926000,HHACJJFHE,0.0,0.0,地铁入站,地铁四号线,0,上梅林,AGM-110,2620191101535757664000,HHACJJFHE,2.0,0.0,地铁出站,地铁四号线,0,上梅林,AGM-104,2620191041535758092000,HHACJJFHE,0.0,0.0,地铁入站,地铁四号线,0,上梅林,AGM-110,2620191101535758342000,HHACJJFHE,2.0,0.0,地铁出站,地铁四号线,0,莲花北,AGM-107,262020107

经过以上指标过滤之后得到能够构成完整且合理的出入站记录 572156 条,每两条记录组成一条完整的行程记录 ,因此有 286078
条合法行程记录,其中包含了入站和出站的时间、线路、站点、刷卡设备等,还能计算出单次乘车所用时间。

3.6.2 不同乘车区间客流量排行

排名前三的乘车区间是:赤尾 —> 华强北,福民福田 —> 口岸、五和 —> 深圳北

在这里插入图片描述

3.6.3 不同线路区间客流排行

在这里插入图片描述
从图可以看出,5 号线直达,3 号线直达和 1 号线直达的客流最多。

3.7 实时计算

通过Flink可以实时计算过去的某个时间段内,个站点的出入站客流量以及总客流量,不同站点区间的客流量,以及不同线路区间的客流量等指标。

对于实时计算的结果可以使用 Redis 或者 Hbase 来进行存储,对于两者的技术特点对比如下:

  • Redis作为纯内存NoSQL虽然读写性能十分优秀,但其支持的数据量通常受内存限制,而HBase没有这个限制,可以存储远超内存大小的数据
  • HBase采用WAL,先记录日志再写入数据,理论上不会丢失数据。而Redis采用的是异步复制数据,在failover时可能会丢失数据
  • 客流信息作为基本不需要再次变动已经固化, 非常适合使用 HBase 来存储。

综上本项目中使用 Hbase 来存储实时计算的数据结果。

3.7.1 将站点客流数据写入 Hbase 中

  1. 首先在 Hbase shell 中使用以下命令建立存储表


create ‘StationTraffic’, {NAME => ‘traffic’}

  1. 执行 com.ngt.traffic.HBaseWriterStationTraffic 将站点的客流信息写入 Hbase 中


# 时间 客流排名
2018-09-01 11:30 001 column=traffic:count, timestamp=1609614078234, value=117
2018-09-01 11:30 001 column=traffic:name, timestamp=1609614078234,value=\xE8\x80\x81\xE8\xA1\x97

代码中统计的是,过去五分钟的客流量信息,每一分钟滚动一次


.timeWindow(Time.minutes(5), Time.minutes(1))

3.7.2 按照不同的业务场景从Hbase中读取数据

执行 com.ngt.traffic.HBaseReaderStationTraffic 实现相关功能

需求1:查询 2018-09-01 08:30 - 2018-09-01 08:45 各站点最近五分钟的客流


case class Traffic(time: String, rank: String, station: String, count: String)
val dataStream1: DataStream[(String, String)] =
// 表名,列族名,起始Rowkey,终止Rowkey(取不到)
env.addSource(new HBaseReader(“StationTraffic”, “traffic”,“2018-09-01 08:30”, “2018-09-01 08:46”))

dataStream1.map(x => {val keys: Array[String] = x._1.split(" ")val values: Array[String] = x._2.split("_")Traffic("时间:" + keys(1), "站点:" + values(1), "排名:" + keys(2), "客流量:" + values(0))
})
.map(data => {println(data.time, data.rank, data.station, data.count)
})---------------------------------------
(时间:08:30,排名:001,站点:五和,客流量:548)
(时间:08:30,排名:002,站点:民治,客流量:386)
(时间:08:30,排名:003,站点:布吉,客流量:369)
(时间:08:30,排名:004,站点:丹竹头,客流量:343)
(时间:08:30,排名:005,站点:南山站,客流量:340)
(时间:08:30,排名:006,站点:深圳北,客流量:313)
(时间:08:30,排名:007,站点:罗湖站,客流量:306)
......

需求2:查询 2018-09-01 06:30 - 2018-09-01 11:30 客流量排名前 3 的站点


val dataStream2: DataStream[(String, String)] =
env.addSource(new HBaseReader(“StationTraffic”, “traffic”,“2018-09-01 06:30”, “2018-09-01 11:31”))

dataStream2.map(x => {val keys: Array[String] = x._1.split(" ")val values: Array[String] = x._2.split("_")Traffic("时间:" + keys(1), "排名:" + keys(2), "站点:" + values(1), "客流量:" + values(0))
})
.filter(_.rank.substring(3).toInt <= 3)
.map(data => {println(data.time, data.rank, data.station, data.count)
})
---------------------------------------
(时间:08:30,排名:001,站点:五和,客流量:548)
(时间:08:30,排名:002,站点:民治,客流量:386)
(时间:08:30,排名:003,站点:布吉,客流量:369)
(时间:08:31,排名:001,站点:五和,客流量:577)
(时间:08:31,排名:002,站点:南山站,客流量:436)
(时间:08:31,排名:003,站点:布吉,客流量:405)
(时间:08:32,排名:001,站点:五和,客流量:602)
(时间:08:32,排名:002,站点:南山站,客流量:439)
(时间:08:32,排名:003,站点:布吉,客流量:413)
(时间:08:33,排名:001,站点:五和,客流量:594)
(时间:08:33,排名:002,站点:南山站,客流量:451)
(时间:08:33,排名:003,站点:布吉,客流量:393)
......

不同乘车区间是同样的道理,更多的业务场景不在列举。

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/688609.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

跟着pink老师前端入门教程(JavaScript)-day01

一、计算机编程基础 &#xff08;一&#xff09;编程语言 1、编程 编程&#xff1a;就是让计算机为解决某个问题而使用某种程序设计语言编写程序代码&#xff0c;并最终得到结果的过程。 计算机程序&#xff1a;就是计算机所执行的一系列的指令集合&#xff0c;而程序全部…

嵌入式学习 C++ Day5、6

嵌入式学习 C Day5、6 一、思维导图 二、作业 1.以下是一个简单的比喻&#xff0c;将多态概念与生活中的实际情况相联系&#xff1a; 比喻&#xff1a;动物园的讲解员和动物表演 想象一下你去了一家动物园&#xff0c;看到了许多不同种类的动物&#xff0c;如狮子、大象、猴…

UVa1359/LA3491 Hills

题目链接 本题是2005年ICPC亚洲区域赛杭州欧赛区的H题 题意 平面上有 n&#xff08;n≤500&#xff09;条线段&#xff0c;其中每条线段的端点都不会在其他线段上。你的任务是数一数有多少个“没有被其他线段切到”的三角形&#xff08;即小山&#xff09;。如下图所示&#x…

【Vitis】Vitis性能优化的开源库

Vitis HLS简介 Vitis™HLS是一种高层次综合工具&#xff0c;支持将C、C和OpenCL™函数硬连线到器件逻辑互连结构和RAM/DSP块上。 Vitis HLS可在Vitis应用加速开发流程中实现硬件内核&#xff0c;并使用C/C语言代码在VivadoDesign Suite中为赛灵思器件设计开发RTL IP。 【Vitis…

sqlserver 分组查询

在 SQL Server 中&#xff0c;分组查询是指使用 GROUP BY 子句对查询结果进行分组&#xff0c;并对每个组应用聚合函数&#xff08;如 SUM、COUNT、AVG 等&#xff09;以计算每个组的汇总值。 以下是一个基本的分组查询示例&#xff1a; SELECT 列1, 列2, 聚合函数(列3) FROM…

不坑盒子 助力高效办公的Office插件

不坑盒子简介 很多朋友在工作过程中需要对Word文档进行编辑处理&#xff0c;如果想让Word排版更有效率可以试试小编带来的这款不坑盒子软件&#xff0c;是一个非常好用的办公工具&#xff0c;拥有近百项功能的Word&#xff0c;wps插件&#xff0c;支持Office 2010以上的版本&a…

【plt.bar绘制条形图or柱状图】:从入门到精通,只需一篇文章!【Matplotlib可视化】

【&#x1f4ca;plt.bar绘制条形图】&#xff1a;从入门到精通&#xff0c;只需一篇文章&#xff01;【Matplotlib】 利用Matplotlib进行数据可视化示例 &#x1f335;文章目录&#x1f335; &#x1f50d; 一、初识plt.bar&#xff1a;条形图的基本概念&#x1f4a1; 二、plt.…

Maven - Plugins报错的正确解决之道

背景&#xff1a; 正确解决之道&#xff1a; 在自己本地Maven的安装目录中找到自己的仓库地址目录&#xff1a;直接搜索自己报错的插件文件&#xff0c;把它们删除&#xff0c;如图&#xff1a; 接着回到IDEA点击Maven刷新按钮重新加载即可&#xff1a;已解决 反例&#xff1…

使用pycaw检测微信消息提示

使用pycaw检测微信消息提示 利用pywinauto库&#xff0c;我们确实可以实现在社交软件上的自动接收与发送消息功能。但要精确捕捉新消息的到达时机&#xff0c;这一库显得稍显笨拙。 这种方法虽然实用&#xff0c;但在效率上可能不是最优选择。 新消息的来到不仅仅有消息记录的…

Swagger-的使用

Swagger-的使用 前言效果1、相关依赖2、相关注解2.1 @Tag设置整个类的名称和详情2.2 @Operation描述具体的方法2.3 @Parameter 描述参数2.4@Schema 为属性添加注释3、Docket配置3.1通过gropeediopenapi进行分组3.2 通过docsOpenApi设置前言 在我们和前端进行交互的时候,出接口…

【机构vip教程】Appium自动化(2):Python+Appium环境搭建

windows下搭建pythonappium环境 搭建过程步骤如下&#xff1a; 1、安装jdk并配置好环境变量&#xff08;jdk版本1.8以上&#xff09; 2、安装android-sdk并配置好环境变量&#xff1b;具体步骤见&#xff1a;https://www.cnblogs.com/YouJeffrey/p/15243705.html 3、安装安…

浅谈js事件机制

事件是什么&#xff1f;事件模型&#xff1f; 原始事件模型&#xff08;DOM0级&#xff09; HTML代码中指定属性值&#xff1a;在js代码中指定属性值&#xff1a;优点&#xff1a;缺点&#xff1a; IE 事件模型DOM2事件模型 对事件循环的理解 宏任务&#xff08;Macrotasks&…

Three.JS教程5 threejs中的材质

Three.JS教程5 threejs中的材质 一、什么是Three.js材质&#xff1f;二、Three.js的材质类型1. 材质类型2. 材质的共用属性&#xff08;1&#xff09;.alphaHash : Boolean&#xff08;2&#xff09;.alphaTest : Float&#xff08;3&#xff09;.alphaToCoverage : Boolean&am…

白酒:制曲工艺的微生物多样性及其作用

在云仓酒庄豪迈白酒的制曲工艺中&#xff0c;微生物多样性是一个关键要素。曲是白酒生产中的重要配料&#xff0c;它由小麦、麸皮等原料制成&#xff0c;经过微生物的发酵和生长而形成。微生物的多样性和相互作用对曲的品质和白酒的口感具有重要影响。 首先&#xff0c;微生物多…

【后端高频面试题--设计模式上篇】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;后端高频面试题 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 往期精彩内容 【后端高频面试题–设计模式上篇】 【后端高频面试题–设计模式下篇】 【后端高频…

Git 操作以及Git 常见问题

Git 操作 git 教程&#xff1a;https://www.runoob.com/git/git-tutorial.html 基本概念 工作区&#xff1a;克隆项目到本地后&#xff0c;项目所在的文件夹&#xff1b; 暂存区&#xff1a;从工作区添加上来的变更&#xff08;新增&#xff0c;修改&#xff0c;删除&#xff…

C++面向对象程序设计-北京大学-郭炜【课程笔记(三)】

C面向对象程序设计-北京大学-郭炜【课程笔记&#xff08;三&#xff09;】 1、构造函数&#xff08;constructor&#xff09;1.1、基本概念 2、赋值构造函数2.1、基本概念2.1、复制构造函数起作用的三种情况2.2、常引用参数的使用 3、类型转换构造函数3.1、什么事类型转换构造函…

关于怎么监督机器学习训练的进度

不知道大家有没有我这种烦恼&#xff0c;运行机器学习模型的时候&#xff0c;一直在哪运行&#xff0c;也不知道啥时候会结束&#xff0c;等也不是&#xff0c;不等也不是&#xff0c;又着急想看到结果。 如下提出三种监督训练进度的方法&#xff1a; 1.使用回调函数&#xf…

Kubernetes实战:通过nodePort方式访问springboot服务

目录 一、准备工作1.1、yaml文件编写 二、创建k8s Service三、附录参考资料 一、准备工作 1.1、yaml文件编写 创建weaveservice_service.yaml文件&#xff0c;yaml文件内容如下 apiVersion: v1 kind: Service metadata:name: weaveservicenamespace: app spec:selector:app:…

寻找正确的数据衡量指标

在分析数据之前&#xff0c;需要对运营&产品设置一个目标行为。这个行为的定义应当是业务目标或者业务目标直接相关的指标&#xff0c;我们希望通过运营或者产品&#xff0c;让用户产生某种行为&#xff0c;并达到双赢的目的。 例如电商产品中&#xff0c;用户最终的行为是…