人工智能学习与实训笔记(二):神经网络之图像分类问题

人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客

目录

二、图像分类问题

2.1 尝试使用全连接神经网络

2.2 引入卷积神经网络

 2.3 分类函数Softmax

2.4 交叉熵损失函数

2.5 学习率优化算法

2.6 图像预处理算法

2.6.1 随机改变亮暗、对比度和颜色等

2.6.2 随机填充

2.6.3 随机裁剪

2.6.4 随机缩放

2.6.5 随机翻转

2.6.6 随机打乱真实框排列顺序


二、图像分类问题

图像分类问题是神经网络经常遇到的处理任务,需要将图像按给定的类别进行分类。

本篇通过手写数字识别这个典型的图像分类任务(0~9个数字一共是10个类别),来了解图像分类问题的特点,原理和方法。

我们首先尝试使用典型的全连接神经网络,再引入适合图像处理任务的卷积神经网络。

2.1 尝试使用全连接神经网络

经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示:

  • 输入层:将数据输入给神经网络。在该任务中,输入层的尺度为28×28的像素值。
  • 隐含层:增加网络深度和复杂度,隐含层的节点数是可以调整的,节点数越多,神经网络表示能力越强,参数量也会增加。在该任务中,中间的两个隐含层为10×10的结构,通常隐含层会比输入层的尺寸小,以便对关键信息做抽象,激活函数使用常见的Sigmoid函数。
  • 输出层:输出网络计算结果,输出层的节点数是固定的。如果是回归问题,节点数量为需要回归的数字数量。如果是分类问题,则是分类标签的数量。在该任务中,模型的输出是回归一个数字,输出层的尺寸为1。

Python源码 - 激活函数为sigmoid的多层网络参考代码:

import paddle.nn.functional as F
from paddle.nn import Linear# 定义多层全连接神经网络
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义两层全连接隐含层,输出维度是10,当前设定隐含节点数为10,可根据任务调整self.fc1 = Linear(in_features=784, out_features=10)self.fc2 = Linear(in_features=10, out_features=10)# 定义一层全连接输出层,输出维度是1self.fc3 = Linear(in_features=10, out_features=1)# 定义网络的前向计算,隐含层激活函数为sigmoid,输出层不使用激活函数def forward(self, inputs):# inputs = paddle.reshape(inputs, [inputs.shape[0], 784])outputs1 = self.fc1(inputs)outputs1 = F.sigmoid(outputs1)outputs2 = self.fc2(outputs1)outputs2 = F.sigmoid(outputs2)outputs_final = self.fc3(outputs2)return outputs_final

然而,全连接神经网络模型并不适合图像分类模型,图像分类任务需要考虑图像数据的空间性,以及如何分类(波士顿房价预测是回归任务,是回归到一个具体数字,手写数字识别实际上是进行分类判断),对于图像识别和分类任务,我们需要引入卷积神经网络,Softmax激活函数以及交叉熵损失函数,整个流程如下图:

2.2 引入卷积神经网络

图像识别需要考虑数据的空间分布,更适合使用卷积神经网络模型,模型中包含卷积层(convolution)和池化层(subsampling),以及最后一个全连接层(fully connected)

关于卷积神经网络,可以参考这一篇:

PyTorch学习系列教程:卷积神经网络【CNN】 - 知乎

关于卷积核和输入,输出通道,可以参考这一篇:

如何理解卷积神经网络中的通道(channel)_卷积通道数_叹久01的博客-CSDN博客

​​

Python源码 - 卷积神经网络参考代码:

# 定义 SimpleNet 网络结构
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)# 定义一层全连接层,输出维度是1self.fc = Linear(in_features=980, out_features=1)# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出# 卷积层激活函数使用Relu,全连接层不使用激活函数def forward(self, inputs):x = self.conv1(inputs)x = F.relu(x)x = self.max_pool1(x)x = self.conv2(x)x = F.relu(x)x = self.max_pool2(x)x = paddle.reshape(x, [x.shape[0], -1])x = self.fc(x)return x

 2.3 分类函数Softmax

 为了进行分类判别,要通过引入Softmax函数到输出层,使得输出层的输出为不同类别概率的集合,并且所有概率之和为1,比如[0.1, 0.2, 0.7]

​​

比如,一个三个标签的分类模型(三分类)使用的Softmax输出层,从中可见原始输出的三个数字3、1、-3,经过Softmax层后转变成加和为1的三个概率值0.88、0.12、0。

​​

2.4 交叉熵损失函数

分类网络模型需要使用交叉熵损失函数不断训练更新模型参数,最终使得交叉熵趋于收敛,从而完成模型训练。

正确解标签对应的输出越大,交叉熵的值越接近0;当输出为1时,交叉熵误差为0。反之,如果正确解标签对应的输出越小,则交叉熵的值越大。 

​​

要想搞清楚交叉熵,推荐大家读一下这篇文章:损失函数:交叉熵详解 - 知乎

里面又牵涉到极大似然估计理论,推荐阅读这篇文章:极大似然估计思想的最简单解释_class_brick的博客-CSDN博客

2.5 学习率优化算法

学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如 所示。

图3: 不同学习率算法效果示意图

  • SGD: 随机梯度下降算法,每次训练少量数据,抽样偏差导致的参数收敛过程中震荡。
  • Momentum: 引入物理“动量”的概念,累积速度,减少震荡,使参数更新的方向更稳定。
  • AdaGrad: 根据不同参数距离最优解的远近,动态调整学习率。学习率逐渐下降,依据各参数变化大小调整学习率。
  • Adam: 由于动量和自适应学习率两个优化思路是正交的,因此可以将两个思路结合起来,这就是当前广泛应用的算法。

2.6 图像预处理算法

在计算机视觉中,通常会对图像做一些随机的变化,产生相似但又不完全相同的样本。主要作用是扩大训练数据集,抑制过拟合,提升模型的泛化能力,常用的方法主要有以下几种:

  • 随机改变亮暗、对比度和颜色
  • 随机填充
  • 随机裁剪
  • 随机缩放
  • 随机翻转
  • 随机打乱真实框排列顺序

下面是分别使用numpy 实现这些数据增强方法。

2.6.1 随机改变亮暗、对比度和颜色等

import numpy as np
import cv2
from PIL import Image, ImageEnhance
import random# 随机改变亮暗、对比度和颜色等
def random_distort(img):# 随机改变亮度def random_brightness(img, lower=0.5, upper=1.5):e = np.random.uniform(lower, upper)return ImageEnhance.Brightness(img).enhance(e)# 随机改变对比度def random_contrast(img, lower=0.5, upper=1.5):e = np.random.uniform(lower, upper)return ImageEnhance.Contrast(img).enhance(e)# 随机改变颜色def random_color(img, lower=0.5, upper=1.5):e = np.random.uniform(lower, upper)return ImageEnhance.Color(img).enhance(e)ops = [random_brightness, random_contrast, random_color]np.random.shuffle(ops)img = Image.fromarray(img)img = ops[0](img)img = ops[1](img)img = ops[2](img)img = np.asarray(img)return img# 定义可视化函数,用于对比原图和图像增强的效果
import matplotlib.pyplot as plt
def visualize(srcimg, img_enhance):# 图像可视化plt.figure(num=2, figsize=(6,12))plt.subplot(1,2,1)plt.title('Src Image', color='#0000FF')plt.axis('off') # 不显示坐标轴plt.imshow(srcimg) # 显示原图片# 对原图做 随机改变亮暗、对比度和颜色等 数据增强srcimg_gtbox = records[0]['gt_bbox']srcimg_label = records[0]['gt_class']plt.subplot(1,2,2)plt.title('Enhance Image', color='#0000FF')plt.axis('off') # 不显示坐标轴plt.imshow(img_enhance)image_path = records[0]['im_file']
print("read image from file {}".format(image_path))
srcimg = Image.open(image_path)
# 将PIL读取的图像转换成array类型
srcimg = np.array(srcimg)# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
img_enhance = random_distort(srcimg)
visualize(srcimg, img_enhance)

2.6.2 随机填充

# 随机填充
def random_expand(img,gtboxes,max_ratio=4.,fill=None,keep_ratio=True,thresh=0.5):if random.random() > thresh:return img, gtboxesif max_ratio < 1.0:return img, gtboxesh, w, c = img.shaperatio_x = random.uniform(1, max_ratio)if keep_ratio:ratio_y = ratio_xelse:ratio_y = random.uniform(1, max_ratio)oh = int(h * ratio_y)ow = int(w * ratio_x)off_x = random.randint(0, ow - w)off_y = random.randint(0, oh - h)out_img = np.zeros((oh, ow, c))if fill and len(fill) == c:for i in range(c):out_img[:, :, i] = fill[i] * 255.0out_img[off_y:off_y + h, off_x:off_x + w, :] = imggtboxes[:, 0] = ((gtboxes[:, 0] * w) + off_x) / float(ow)gtboxes[:, 1] = ((gtboxes[:, 1] * h) + off_y) / float(oh)gtboxes[:, 2] = gtboxes[:, 2] / ratio_xgtboxes[:, 3] = gtboxes[:, 3] / ratio_yreturn out_img.astype('uint8'), gtboxes# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
srcimg_gtbox = records[0]['gt_bbox']
img_enhance, new_gtbox = random_expand(srcimg, srcimg_gtbox)
visualize(srcimg, img_enhance)

2.6.3 随机裁剪

随机裁剪之前需要先定义两个函数,multi_box_iou_xywhbox_crop这两个函数将被保存在box_utils.py文件中。

import numpy as npdef multi_box_iou_xywh(box1, box2):"""In this case, box1 or box2 can contain multi boxes.Only two cases can be processed in this method:1, box1 and box2 have the same shape, box1.shape == box2.shape2, either box1 or box2 contains only one box, len(box1) == 1 or len(box2) == 1If the shape of box1 and box2 does not match, and both of them contain multi boxes, it will be wrong."""assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2inter_x1 = np.maximum(b1_x1, b2_x1)inter_x2 = np.minimum(b1_x2, b2_x2)inter_y1 = np.maximum(b1_y1, b2_y1)inter_y2 = np.minimum(b1_y2, b2_y2)inter_w = inter_x2 - inter_x1inter_h = inter_y2 - inter_y1inter_w = np.clip(inter_w, a_min=0., a_max=None)inter_h = np.clip(inter_h, a_min=0., a_max=None)inter_area = inter_w * inter_hb1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)return inter_area / (b1_area + b2_area - inter_area)def box_crop(boxes, labels, crop, img_shape):x, y, w, h = map(float, crop)im_w, im_h = map(float, img_shape)boxes = boxes.copy()boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (boxes[:, 0] + boxes[:, 2] / 2) * im_wboxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (boxes[:, 1] + boxes[:, 3] / 2) * im_hcrop_box = np.array([x, y, x + w, y + h])centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(axis=1)boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])boxes[:, :2] -= crop_box[:2]boxes[:, 2:] -= crop_box[:2]mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)labels = labels * mask.astype('float32')boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (boxes[:, 2] - boxes[:, 0]) / wboxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (boxes[:, 3] - boxes[:, 1]) / hreturn boxes, labels, mask.sum()# 随机裁剪
def random_crop(img,boxes,labels,scales=[0.3, 1.0],max_ratio=2.0,constraints=None,max_trial=50):if len(boxes) == 0:return img, boxesif not constraints:constraints = [(0.1, 1.0), (0.3, 1.0), (0.5, 1.0), (0.7, 1.0),(0.9, 1.0), (0.0, 1.0)]img = Image.fromarray(img)w, h = img.sizecrops = [(0, 0, w, h)]for min_iou, max_iou in constraints:for _ in range(max_trial):scale = random.uniform(scales[0], scales[1])aspect_ratio = random.uniform(max(1 / max_ratio, scale * scale), \min(max_ratio, 1 / scale / scale))crop_h = int(h * scale / np.sqrt(aspect_ratio))crop_w = int(w * scale * np.sqrt(aspect_ratio))crop_x = random.randrange(w - crop_w)crop_y = random.randrange(h - crop_h)crop_box = np.array([[(crop_x + crop_w / 2.0) / w,(crop_y + crop_h / 2.0) / h,crop_w / float(w), crop_h / float(h)]])iou = multi_box_iou_xywh(crop_box, boxes)if min_iou <= iou.min() and max_iou >= iou.max():crops.append((crop_x, crop_y, crop_w, crop_h))breakwhile crops:crop = crops.pop(np.random.randint(0, len(crops)))crop_boxes, crop_labels, box_num = box_crop(boxes, labels, crop, (w, h))if box_num < 1:continueimg = img.crop((crop[0], crop[1], crop[0] + crop[2],crop[1] + crop[3])).resize(img.size, Image.LANCZOS)img = np.asarray(img)return img, crop_boxes, crop_labelsimg = np.asarray(img)return img, boxes, labels# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
srcimg_gtbox = records[0]['gt_bbox']
srcimg_label = records[0]['gt_class']img_enhance, new_labels, mask = random_crop(srcimg, srcimg_gtbox, srcimg_label)
visualize(srcimg, img_enhance)

2.6.4 随机缩放

# 随机缩放
def random_interp(img, size, interp=None):interp_method = [cv2.INTER_NEAREST,cv2.INTER_LINEAR,cv2.INTER_AREA,cv2.INTER_CUBIC,cv2.INTER_LANCZOS4,]if not interp or interp not in interp_method:interp = interp_method[random.randint(0, len(interp_method) - 1)]h, w, _ = img.shapeim_scale_x = size / float(w)im_scale_y = size / float(h)img = cv2.resize(img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)return img# 对原图做 随机缩放
img_enhance = random_interp(srcimg, 640)
visualize(srcimg, img_enhance)

2.6.5 随机翻转

# 随机翻转
def random_flip(img, gtboxes, thresh=0.5):if random.random() > thresh:img = img[:, ::-1, :]gtboxes[:, 0] = 1.0 - gtboxes[:, 0]return img, gtboxes# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
img_enhance, box_enhance = random_flip(srcimg, srcimg_gtbox)
visualize(srcimg, img_enhance)

2.6.6 随机打乱真实框排列顺序

# 随机打乱真实框排列顺序
def shuffle_gtbox(gtbox, gtlabel):gt = np.concatenate([gtbox, gtlabel[:, np.newaxis]], axis=1)idx = np.arange(gt.shape[0])np.random.shuffle(idx)gt = gt[idx, :]return gt[:, :4], gt[:, 4]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/687742.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

这才是大学生该做的副业,别再痴迷于游戏了!

感谢大家一直以来的支持和关注&#xff0c;尤其是在我的上一个公众号被关闭后&#xff0c;仍然选择跟随我的老粉丝们&#xff0c;你们的支持是我继续前行的动力。为了回馈大家长期以来的陪伴&#xff0c;我决定分享一些实用的干货&#xff0c;这些都是我亲身实践并且取得成功的…

Typora的下载安装(文末有安装包,2024亲测可用)

一、安装步骤 1、首先下载安装包&#xff0c;解压到你的目录下面 2、进入到解压后的文件夹下面&#xff0c;看到如下的内容&#xff1a; 3、双击exe文件开始安装&#xff0c;选择安装目录&#xff0c;并记下安装地址&#xff01;&#xff01;&#xff01; 选择创建桌面快捷方…

2024年腾讯云4核8G12M轻量应用服务器测评,2月更新

4核8G服务器支持多少人同时在线访问&#xff1f;阿腾云的4核8G服务器可以支持20个访客同时访问&#xff0c;关于4核8G服务器承载量并发数qps计算测评&#xff0c;云服务器上运行程序效率不同支持人数在线人数不同&#xff0c;公网带宽也是影响4核8G服务器并发数的一大因素&…

树和二叉树的基本知识

一、树的概念及结构 1.树的概念 树是一种 非线性 的数据结构&#xff0c;它是由 n &#xff08; n>0 &#xff09;个有限结点组成一个具有层次关系的集合。 把它叫做树是因 为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的 。 有一个 特殊…

2024春节过后,抖店爆款出单类目产品,应季产品需要提前布局

我是王路飞。 之前给你们强调过&#xff0c;“应季品”是最容易爆单的产品类型&#xff0c;没有之一。 那么在2024年春节刚过的现在&#xff0c;当别人还沉浸在过年的氛围中时&#xff0c;有心的商家早就开始布局未来三个月的爆款类目和产品了。 今天的内容&#xff0c;就给…

软件实例分享,乒乓球俱乐部会员系统管理软件教程

软件实例分享&#xff0c;乒乓球俱乐部会员系统管理软件教程 一、前言 以下软件程序教程以 佳易王乒乓球馆计时计费软件V17.0为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 多种计费方式&#xff0c;可以按单价&#xff0c;也可以按时间段 可…

2942. 查找包含给定字符的单词【简单】

2942. 查找包含给定字符的单词【简单】 题目描述&#xff1a; 给你一个下标从 0 开始的字符串数组 words 和一个字符 x 。 请你返回一个 下标数组 &#xff0c;表示下标在数组中对应的单词包含字符 x 。 注意&#xff1a;返回的数组可以是 任意 顺序 示例 1&#xff1a; 输…

vue3 Element Plus 基于webstorm练习

提要 vue是前端框架&#xff0c;Elemen是组件库。前端框架和组件库的区别与联系 nodejs 脚本语言需要一个解析器才能运行&#xff0c;JavaScript是脚本语言&#xff0c;在不同的位置有不一样的解析器&#xff0c;如写入html的js语言&#xff0c;浏览器是它的解析器角色。而对…

python in Vscode

背景 对于后端的语言选择&#xff1a; python&#xff0c;java&#xff0c;JavaScript备选。 选择Python 原因&#xff1a;可能是非IT专业的人中&#xff0c;会Python的人比较多。 目的 之前使用的IDE是VSCODE&#xff0c;在WSL的环境下使用。现在需要在在WSL的VSCODE下使…

【Java程序员面试专栏 Java领域】Java Spring框架 核心面试指引

关于Java Spring框架部分的核心知识进行一网打尽,主要包括Spring框架中的重点概念IOC和AOP,以及SpringBoot的自动装配机制,SpringMVC的核心执行流程,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 基础概念 Spring框架的基本概念,S…

浅谈语义分割、图像分类与目标检测中的TP、TN、FP、FN

语义分割 TP&#xff1a;正确地预测出了正类&#xff0c;即原本是正类&#xff0c;识别的也是正类 TN&#xff1a;正确地预测出了负类&#xff0c;即原本是负类&#xff0c;识别的也是负类 FP&#xff1a;错误地预测为了正类&#xff0c;即原本是负类&#xff0c;识别的是正类…

秒懂百科,C++如此简单丨第二十一天:栈和队列

目录 前言 Everyday English 栈&#xff08;Stack&#xff09; 图文解释 实现添加删除元素 实现查看清空栈 完整代码 运行示例 栈的选择题 队列&#xff08;Queue&#xff09; 图文解释 队列的基本用法 完整代码 运行结果 队列的好处 结尾 前言 今天我们将…

java 培训班预定管理系统Myeclipse开发mysql数据库web结构jsp编程servlet计算机网页项目

一、源码特点 java 培训班预定管理系统是一套完善的java web信息管理系统 采用serlvetdaobean&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&#xf…

智能扭矩系统——SunTorque

随着工业自动化的不断发展&#xff0c;智能扭矩系统作为一种新型的扭矩控制技术&#xff0c;逐渐受到广泛关注。智能扭矩系统是一种基于传感器技术和计算机控制的扭矩管理系统&#xff0c;它能够实时监测和调整设备的扭矩输出&#xff0c;以确保生产过程中的稳定性和安全性。 搭…

采用文件路径安装库到不同的python环境

C:\Users\Administrator>pip3 install --targetD:\PycharmProjects\pythonProject3\venv\Lib\site-packages configparser

Aquarius Fantasy Series Orcs

使用标准管道创建。目前不支持URP或HDRP。 - 如果想将其转换为URP或类似材质。90%的材质可以完美转换。但是树叶材质和岩石顶盖材质无法转换,除非有自己的材质,无论是自己制作的,还是其他资源包。布料也是如此,每块布料都是单面的,使用简单的材质来达到双面效果。所有其他…

IOC理解总结

IOC 控制反转&#xff08;Inversion of Control&#xff0c;缩写为IoC&#xff09;&#xff0c;是面向对象编程中的一种设计原则&#xff0c;可以用来减低计算机代码之间的耦合度。其中最常见的方式叫做依赖注入&#xff08;Dependency Injection&#xff0c;简称DI&#xff09…

21种matlab信号分解方法汇总

21中信号分解方法汇总 CEEMD(互补集合经验模态分解)CEEMDAN(自适应噪声完备集合经验模态分解) EEMD(集合经验模态分解&#xff09;EMD(经验模态分解)ESMD(极点对称模态分解&#xff09;EWT(经验小波变换分解)FEEMD(快速EEMD分解)ICEEMDAN(改进自适应噪声完备集合经验模态分解)L…

BuildAdmin - 免费开源可商用!基于 ThinkPHP8 和 Vue3 等流行技术栈打造的商业级后台管理系统

一款包含 PHP 服务端和 Vue 前端代码的 admin 管理系统&#xff0c;实用性很强&#xff0c;推荐给大家。 BuildAdmin 是一个成熟的后台管理系统&#xff0c;后端服务采用 ThinkPHP8 &#xff0c;数据库使用 Mysql&#xff0c;前端部分则使用当前流行的 Vue3 / TypeScript / Vi…

HDFS 命令实操

在hdfs中创建文件夹&#xff1a;/itcast/itheima&#xff0c;如存在请删除&#xff08;跳过回收站&#xff09; 上传Linux文件系统中的/etc/hosts文件到hdfs的/itcast/itheima内 查看hdfs中刚刚上传的文件内容 向hdfs中上传的文件追加&#xff1a;itheima到最后一行 下…