RTDETR改进系列指南

基于Ultralytics的RT-DETR改进项目.(89.9¥)

为了感谢各位对RTDETR项目的支持,本项目的赠品是yolov5-PAGCP通道剪枝算法.具体使用教程

自带的一些文件说明

  1. train.py
    训练模型的脚本
  2. main_profile.py
    输出模型和模型每一层的参数,计算量的脚本(rtdetr-l和rtdetr-x因为thop库的问题,没办法正常输出每一层的参数和计算量和时间)
  3. val.py
    使用训练好的模型计算指标的脚本
  4. detect.py
    推理的脚本
  5. track.py
    跟踪推理的脚本
  6. heatmap.py
    生成热力图的脚本
  7. get_FPS.py
    计算模型储存大小、模型推理时间、FPS的脚本
  8. get_COCO_metrice.py
    计算COCO指标的脚本
  9. plot_result.py
    绘制曲线对比图的脚本

RT-DETR基准模型

  1. ultralytics/cfg/models/rt-detr/rtdetr-r18.yaml(有预训练权重COCO+Objects365,来自RTDETR-Pytorch版本的移植)

    rtdetr-r18 summary: 421 layers, 20184464 parameters, 20184464 gradients, 58.6 GFLOPs

  2. ultralytics/cfg/models/rt-detr/rtdetr-r34.yaml(有预训练权重COCO,来自RTDETR-Pytorch版本的移植)

    rtdetr-r34 summary: 525 layers, 31441668 parameters, 31441668 gradients, 90.6 GFLOPs

  3. ultralytics/cfg/models/rt-detr/rtdetr-r50-m.yaml(有预训练权重COCO,来自RTDETR-Pytorch版本的移植)

    rtdetr-r50-m summary: 637 layers, 36647020 parameters, 36647020 gradients, 98.3 GFLOPs

  4. ultralytics/cfg/models/rt-detr/rtdetr-r50.yaml(有预训练权重COCO+Objects365,来自RTDETR-Pytorch版本的移植)

    rtdetr-r50 summary: 629 layers, 42944620 parameters, 42944620 gradients, 134.8 GFLOPs

  5. ultralytics/cfg/models/rt-detr/rtdetr-r101.yaml

    rtdetr-r101 summary: 867 layers, 76661740 parameters, 76661740 gradients, 257.7 GFLOPs

  6. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml(有预训练权重)

    rtdetr-l summary: 673 layers, 32970732 parameters, 32970732 gradients, 108.3 GFLOPs

  7. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml(有预训练权重)

    rtdetr-x summary: 867 layers, 67468108 parameters, 67468108 gradients, 232.7 GFLOPs

专栏改进汇总

二次创新系列

  1. ultralytics/cfg/models/rt-detr/rtdetr-DCNV2-Dynamic.yaml

    使用自研可变形卷积DCNV2-Dynamic改进resnet18-backbone中的BasicBlock.(详细介绍请看百度云视频-MPCA与DCNV2_Dynamic的说明)

  2. ultralytics/cfg/models/rt-detr/rtdetr-iRMB-Cascaded.yaml

    使用EfficientViT CVPR2023中的CascadedGroupAttention对EMO ICCV2023中的iRMB进行二次创新来改进resnet18-backbone中的BasicBlock.(详细介绍请看百度云视频-20231119更新说明)

  3. ultralytics/cfg/models/rt-detr/rtdetr-PConv-Rep.yaml

    使用RepVGG CVPR2021中的RepConv对FasterNet CVPR2023中的PConv进行二次创新后改进resnet18-backbone中的BasicBlock.

  4. ultralytics/cfg/models/rt-detr/rtdetr-Faster-Rep.yaml

    使用RepVGG CVPR2021中的RepConv对FasterNet CVPR2023中的Faster-Block进行二次创新后改进resnet18-backbone中的BasicBlock.

  5. ultralytics/cfg/models/rt-detr/rtdetr-Faster-EMA.yaml

    使用EMA ICASSP2023对FasterNet CVPR2023中的Faster-Block进行二次创新后改进resnet18-backbone中的BasicBlock.

  6. ultralytics/cfg/models/rt-detr/rtdetr-Faster-Rep-EMA.yaml

    使用RepVGG CVPR2021中的RepConv和EMA ICASSP2023对FasterNet CVPR2023中的Faster-Block进行二次创新后改进resnet18-backbone中的BasicBlock.

  7. ultralytics/cfg/models/rt-detr/rtdetr-DWRC3-DRB.yaml

    使用UniRepLKNet中的DilatedReparamBlock对DWRSeg中的Dilation-wise Residual(DWR)进行二次创新改进rtdetr.

  8. ultralytics/cfg/models/rt-detr/rtdetr-ASF-P2.yaml

    在ultralytics/cfg/models/rt-detr/rtdetr-ASF.yaml的基础上进行二次创新,引入P2检测层并对网络结构进行优化.

  9. ultralytics/cfg/models/rt-detr/rtdetr-slimneck-ASF.yaml

    使用SlimNeck中的VoVGSCSP\VoVGSCSPC和GSConv和ASF-YOLO中的Attentional Scale Sequence Fusion改进rtdetr中的CCFM.

  10. ultralytics/cfg/models/rt-detr/rtdetr-goldyolo-asf.yaml

    利用华为2023最新GOLD-YOLO中的Gatherand-Distribute和ASF-YOLO中的Attentional Scale Sequence Fusion进行改进特征融合模块.

  11. ultralytics/cfg/models/rt-detr/rtdetr-HSPAN.yaml

    对MFDS-DETR中的HS-FPN进行二次创新后得到HSPAN改进RTDETR中的CCFM.

  12. ultralytics/cfg/models/rt-detr/rtdetr-ASF-Dynamic.yaml

    使用ICCV2023 DySample改进ASF-YOLO中的Attentional Scale Sequence Fusion的上采样模块得到Dynamic Sample Attentional Scale Sequence Fusion改进CCFM.

  13. ultralytics/cfg/models/rt-detr/rtdetr-iRMB-DRB.yaml

    使用UniRepLKNet中的DilatedReparamBlock对EMO ICCV2023中的iRMB进行二次创新来改进resnet18-backbone中的BasicBlock.

  14. ultralytics/cfg/models/rt-detr/rtdetr-iRMB-SWC.yaml

    使用shift-wise conv对EMO ICCV2023中的iRMB进行二次创新来改进resnet18-backbone中的BasicBlock.

自研系列

待更新

BackBone系列

  1. ultralytics/cfg/models/rt-detr/rt-detr-timm.yaml

    使用timm库系列的主干替换rtdetr的backbone.(基本支持现有CNN模型)

  2. ultralytics/cfg/models/rt-detr/rt-detr-fasternet.yaml

    使用FasterNet CVPR2023替换rtdetr的backbone.

  3. ultralytics/cfg/models/rt-detr/rt-detr-EfficientViT.yaml

    使用EfficientViT CVPR2023替换rtdetr的backbone.

  4. ultralytics/cfg/models/rt-detr/rtdetr-convnextv2.yaml

    使用ConvNextV2 2023替换rtdetr的backbone.

  5. ultralytics/cfg/models/rt-detr/rtdetr-EfficientFormerv2.yaml

    使用EfficientFormerv2 2022替换rtdetr的backbone.

  6. ultralytics/cfg/models/rt-detr/rtdetr-repvit.yaml

    使用RepViT ICCV2023替换rtdetr的backbone.

  7. ultralytics/cfg/models/rt-detr/rtdetr-CSwomTramsformer.yaml

    使用CSwinTramsformer CVPR2022替换rtdetr的backbone.

  8. ultralytics/cfg/models/rt-detr/rtdetr-VanillaNet.yaml

    使用VanillaNet 2023替换rtdetr的backbone.

  9. ultralytics/cfg/models/rt-detr/rtdetr-SwinTransformer.yaml

    使用SwinTransformer ICCV2021替换rtdetr的backbone.

  10. ultralytics/cfg/models/rt-detr/rtdetr-lsknet.yaml

    使用LSKNet ICCV2023替换rtdetr的backbone.

  11. ultralytics/cfg/models/rt-detr/rt-detr-unireplknet.yaml

    使用UniRepLKNet替换rtdetr的backbone.

  12. ultralytics/cfg/models/rt-detr/rtdetr-TransNeXt.yaml

    使用TransNeXt改进rtdetr的backbone.

AIFI系列

  1. ultralytics/cfg/models/rt-detr/rtdetr-AIFI-LPE.yaml

    使用LearnedPositionalEncoding改进AIFI中的位置编码生成.(详细介绍请看百度云视频-20231119更新说明)

  2. ultralytics/cfg/models/rt-detr/rtdetr-CascadedGroupAttention.yaml

    使用EfficientViT CVPR2023中的CascadedGroupAttention改进rtdetr中的AIFI.(详细请看百度云视频-rtdetr-CascadedGroupAttention说明)

  3. ultralytics/cfg/models/rt-detr/rtdetr-AIFI-DAttention.yaml

    使用Vision Transformer with Deformable Attention CVPR2022中的DAttention改进AIFI.

  4. ultralytics/cfg/models/rt-detr/rtdetr-AIFI-HiLo.yaml

    使用LITv2中具有提取高低频信息的高效注意力对AIFI进行二次改进.

Neck系列

  1. ultralytics/cfg/models/rt-detr/rtdetr-ASF.yaml

    使用ASF-YOLO中的Attentional Scale Sequence Fusion来改进rtdetr.

  2. ultralytics/cfg/models/rt-detr/rtdetr-slimneck.yaml

    使用SlimNeck中的VoVGSCSP\VoVGSCSPC和GSConv改进rtdetr中的CCFM.

  3. ultralytics/cfg/models/rt-detr/rtdetr-SDI.yaml

    使用U-NetV2中的 Semantics and Detail Infusion Module对CCFM中的feature fusion进行改进.

  4. ultralytics/cfg/models/rt-detr/rtdetr-goldyolo.yaml

    利用华为2023最新GOLD-YOLO中的Gatherand-Distribute进行改进特征融合模块.

  5. ultralytics/cfg/models/rt-detr/rtdetr-HSFPN.yaml

    使用MFDS-DETR中的HS-FPN改进RTDETR中的CCFM.

Head系列

  1. ultralytics/cfg/models/rt-detr/rtdetr-p2.yaml

    添加小目标检测头P2到TransformerDecoderHead中.

RepC3改进系列

  1. ultralytics/cfg/models/rt-detr/rtdetr-DWRC3.yaml

    使用DWRSeg中的Dilation-wise Residual(DWR)模块构建DWRC3改进rtdetr.

  2. ultralytics/cfg/models/rt-detr/rtdetr-Conv3XCC3.yaml

    使用Swift Parameter-free Attention Network中的Conv3XC改进RepC3.

  3. ultralytics/cfg/models/rt-detr/rtdetr-DRBC3.yaml

    使用UniRepLKNet中的DilatedReparamBlock改进RepC3.

  4. ultralytics/cfg/models/rt-detr/rtdetr-DBBC3.yaml

    使用DiverseBranchBlock CVPR2021改进RepC3.

ResNet主干中的BasicBlock/BottleNeck改进系列(以下改进BottleNeck基本都有,就不再重复标注)

  1. ultralytics/cfg/models/rt-detr/rtdetr-Ortho.yaml

    使用OrthoNets中的正交通道注意力改进resnet18-backbone中的BasicBlock.(详细介绍请看百度云视频-20231119更新说明)

  2. ultralytics/cfg/models/rt-detr/rtdetr-DCNV2.yaml

    使用可变形卷积DCNV2改进resnet18-backbone中的BasicBlock.

  3. ultralytics/cfg/models/rt-detr/rtdetr-DCNV3.yaml

    使用可变形卷积DCNV3 CVPR2023改进resnet18-backbone中的BasicBlock.(安装教程请看百度云视频-20231119更新说明)

  4. ultralytics/cfg/models/rt-detr/rtdetr-iRMB.yaml

    使用EMO ICCV2023中的iRMB改进resnet18-backbone中的BasicBlock.(详细介绍请看百度云视频-20231119更新说明)

  5. ultralytics/cfg/models/rt-detr/rtdetr-DySnake.yaml

    添加DySnakeConv到resnet18-backbone中的BasicBlock中.

  6. ultralytics/cfg/models/rt-detr/rtdetr-PConv.yaml

    使用FasterNet CVPR2023中的PConv改进resnet18-backbone中的BasicBlock.

  7. ultralytics/cfg/models/rt-detr/rtdetr-Faster.yaml

    使用FasterNet CVPR2023中的Faster-Block改进resnet18-backbone中的BasicBlock.

  8. ultralytics/cfg/models/rt-detr/rtdetr-AKConv.yaml

    使用AKConv 2023改进resnet18-backbone中的BasicBlock.

  9. ultralytics/cfg/models/rt-detr/rtdetr-RFAConv.yaml

    使用RFAConv 2023改进resnet18-backbone中的BasicBlock.

  10. ultralytics/cfg/models/rt-detr/rtdetr-RFCAConv.yaml

    使用RFCAConv 2023改进resnet18-backbone中的BasicBlock.

  11. ultralytics/cfg/models/rt-detr/rtdetr-RFCBAMConv.yaml

    使用RFCBAMConv 2023改进resnet18-backbone中的BasicBlock.

  12. ultralytics/cfg/models/rt-detr/rtdetr-Conv3XC.yaml

    使用Swift Parameter-free Attention Network中的Conv3XC改进resnet18-backbone中的BasicBlock.

  13. ultralytics/cfg/models/rt-detr/rtdetr-DRB.yaml

    使用UniRepLKNet中的DilatedReparamBlock改进resnet18-backbone中的BasicBlock.

  14. ultralytics/cfg/models/rt-detr/rtdetr-DBB.yaml

    使用DiverseBranchBlock CVPR2021改进resnet18-backbone中的BasicBlock.

  15. ultralytics/cfg/models/rt-detr/rtdetr-DualConv.yaml

    使用DualConv改进resnet18-backbone中的BasicBlock.

  16. ultralytics/cfg/models/rt-detr/rtdetr-AggregatedAtt.yaml

    使用TransNeXt中的聚合感知注意力改进resnet18中的BasicBlock.(百度云视频-20240106更新说明)

  17. ultralytics/cfg/models/rt-detr/rtdetr-DCNV4.yaml

    使用DCNV4改进resnet18中的BasicBlock.

  18. ultralytics/cfg/models/rt-detr/rtdetr-SWC.yaml

    使用shift-wise conv改进resnet18中的BasicBlock.

上下采样算子系列

  1. ultralytics/cfg/models/rt-detr/rtdetr-DySample.yaml

    使用ICCV2023 DySample改进CCFM中的上采样.

  2. ultralytics/cfg/models/rt-detr/rtdetr-CARAFE.yaml

    使用ICCV2019 CARAFE改进CCFM中的上采样.

  3. ultralytics/cfg/models/rt-detr/rtdetr-HWD.yaml

    使用Haar wavelet downsampling改进CCFM的下采样.

RT-DETR-L改进系列

  1. ultralytics/cfg/models/rt-detr/rtdetr-l-GhostHGNetV2.yaml

    使用GhostConv改进HGNetV2.(详细介绍请看百度云视频-20231109更新说明)

  2. ultralytics/cfg/models/rt-detr/rtdetr-l-RepHGNetV2.yaml

    使用RepConv改进HGNetV2.(详细介绍请看百度云视频-20231109更新说明)

  3. ultralytics/cfg/models/rt-detr/rtdetr-l-attention.yaml

    添加注意力模块到HGBlock中.(手把手教程请看百度云视频-手把手添加注意力教程)

注意力系列

  1. EMA
  2. SimAM
  3. SpatialGroupEnhance
  4. BiLevelRoutingAttention, BiLevelRoutingAttention_nchw
  5. TripletAttention
  6. CoordAtt
  7. CBAM
  8. BAMBlock
  9. EfficientAttention(CloFormer中的注意力)
  10. LSKBlock
  11. SEAttention
  12. CPCA
  13. deformable_LKA
  14. EffectiveSEModule
  15. LSKA
  16. SegNext_Attention
  17. DAttention(Vision Transformer with Deformable Attention CVPR2022)
  18. FocusedLinearAttention(ICCV2023)
  19. MLCA
  20. TransNeXt_AggregatedAttention
  21. HiLo

IoU系列

  1. IoU,GIoU,DIoU,CIoU,EIoU,SIoU(百度云视频-20231125更新说明)
  2. MPDIoU论文链接(百度云视频-20231125更新说明)
  3. Inner-IoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-EIoU,Inner-SIoU论文链接(百度云视频-20231125更新说明)
  4. Inner-MPDIoU(利用Inner-Iou与MPDIou进行二次创新)(百度云视频-20231125更新说明)
  5. Normalized Gaussian Wasserstein Distance.论文链接(百度云视频-20231125更新说明)
  6. Shape-IoU,Inner-Shape-IoU论文链接(百度云视频-20240106更新说明)
  7. SlideLoss,EMASlideLoss创新思路.Yolo-Face V2(百度云视频-20240113更新说明)
  8. Wise-IoU(v1,v2,v3)系列(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU)(百度云视频-20240113更新说明)
  9. Inner-Wise-IoU(v1,v2,v3)系列(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU)(百度云视频-20240113更新说明)
  10. Focaler-IoU,Focaler-GIoU,Focaler-DIoU,Focaler-CIoU,Focaler-EIoU,Focaler-SIoU,Focaler-Shape-IoU,Focaler-MPDIoU论文链接(百度云视频-20240128更新说明)
  11. Focaler-Wise-IoU(v1,v2,v3)(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU)论文链接(百度云视频-20240128更新说明)

以Yolov8为基准模型的改进方案

  1. ultralytics/cfg/models/yolo-detr/yolov8-detr.yaml

    使用RT-DETR中的TransformerDecoderHead改进yolov8.

  2. ultralytics/cfg/models/yolo-detr/yolov8-detr-DWR.yaml

    使用RT-DETR中的TransformerDecoderHead和DWRSeg中的Dilation-wise Residual(DWR)模块改进yolov8.

  3. ultralytics/cfg/models/yolo-detr/yolov8-detr-fasternet.yaml

    使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023改进yolov8.(支持替换其他主干,请看百度云视频-替换主干示例教程)

  4. ultralytics/cfg/models/yolo-detr/yolov8-detr-AIFI-LPE.yaml

    使用RT-DETR中的TransformerDecoderHead和LearnedPositionalEncoding改进yolov8.(详细介绍请看百度云视频-20231119更新说明)

  5. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV2.yaml

    使用RT-DETR中的TransformerDecoderHead和可变形卷积DCNV2改进yolov8.

  6. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV3.yaml

    使用RT-DETR中的TransformerDecoderHead和可变形卷积DCNV3 CVPR2023改进yolov8.(安装教程请看百度云视频-20231119更新说明)

  7. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV2-Dynamic.yaml

    使用RT-DETR中的TransformerDecoderHead和自研可变形卷积DCNV2-Dynamic改进yolov8.(详细介绍请看百度云视频-MPCA与DCNV2_Dynamic的说明)

  8. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Ortho.yaml

    使用RT-DETR中的TransformerDecoderHead和OrthoNets中的正交通道注意力改进yolov8.(详细介绍请看百度云视频-20231119更新说明)

  9. ultralytics/cfg/models/yolo-detr/yolov8-detr-attention.yaml

    添加注意力到基于RTDETR-Head中的yolov8中.(手把手教程请看百度云视频-手把手添加注意力教程)

  10. ultralytics/cfg/models/yolo-detr/yolov8-detr-p2.yaml

    添加小目标检测头P2到TransformerDecoderHead中.

  11. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DySnake.yaml

    DySnakeConv与C2f融合.

  12. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Faster.yaml

    使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中的Faster-Block改进yolov8.

  13. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Faster-Rep.yaml

    使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与RepVGG CVPR2021中的RepConv二次创新后的Faster-Block-Rep改进yolov8.

  14. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Faster-EMA.yaml

    使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与EMA ICASSP2023二次创新后的Faster-Block-EMA的Faster-Block-EMA改进yolov8.

  15. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Faster-Rep-EMA.yaml

    使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与RepVGG CVPR2021中的RepConv、EMA ICASSP2023二次创新后的Faster-Block改进yolov8.

  16. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-AKConv.yaml

    使用RT-DETR中的TransformerDecoderHead和AKConv 2023改进yolov8.

  17. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-RFAConv.yaml

    使用RT-DETR中的TransformerDecoderHead和RFAConv 2023改进yolov8.

  18. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-RFAConv.yaml

    使用RT-DETR中的TransformerDecoderHead和RFCAConv 2023改进yolov8.

  19. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-RFAConv.yaml

    使用RT-DETR中的TransformerDecoderHead和RFCBAMConv 2023改进yolov8.

  20. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-Conv3XC.yaml

    使用RT-DETR中的TransformerDecoderHead和Swift Parameter-free Attention Network中的Conv3XC改进yolov8.

  21. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-SPAB.yaml

    使用RT-DETR中的TransformerDecoderHead和Swift Parameter-free Attention Network中的SPAB改进yolov8.

  22. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DRB.yaml

    使用RT-DETR中的TransformerDecoderHead和UniRepLKNet中的DilatedReparamBlock改进yolov8.

  23. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-UniRepLKNetBlock.yaml

    使用RT-DETR中的TransformerDecoderHead和UniRepLKNet中的UniRepLKNetBlock改进yolov8.

  24. ultralytics/cfg/models/yolo-detr/yolov8-detr-DWR-DRB.yaml

    使用UniRepLKNet中的DilatedReparamBlock对DWRSeg中的Dilation-wise Residual(DWR)进行二次创新改进yolov8.

  25. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DBB.yaml

    使用RT-DETR中的TransformerDecoderHead和DiverseBranchBlock CVPR2021改进yolov8.

  26. ultralytics/cfg/models/yolo-detr/yolov8-detr-CSP-EDLAN.yaml

    使用RT-DETR中的TransformerDecoderHead和DualConv打造CSP Efficient Dual Layer Aggregation Networks改进yolov8.

  27. ultralytics/cfg/models/yolo-detr/yolov8-detr-ASF.yaml

    使用RT-DETR中的TransformerDecoderHead和ASF-YOLO中的Attentional Scale Sequence Fusion改进yolov8.

  28. ultralytics/cfg/models/yolo-detr/yolov8-detr-ASF-P2.yaml

    在ultralytics/cfg/models/yolo-detr/yolov8-detr-ASF.yaml的基础上进行二次创新,引入P2检测层并对网络结构进行优化.

  29. ultralytics/cfg/models/yolo-detr/yolov8-detr-slimneck.yaml

    使用RT-DETR中的TransformerDecoderHead和SlimNeck中VoVGSCSP\VoVGSCSPC和GSConv改进yolov8的neck.

  30. ultralytics/cfg/models/yolo-detr/yolov8-detr-slimneck-asf.yaml

    在ultralytics/cfg/models/yolo-detr/yolov8-detr-slimneck.yaml使用ASF-YOLO中的Attentional Scale Sequence Fusion进行二次创新.

  31. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-AggregatedAtt.yaml

    使用RT-DETR中的TransformerDecoderHead和TransNeXt中的聚合感知注意力改进C2f.(百度云视频-20240106更新说明)

  32. ultralytics/cfg/models/yolo-detr/yolov8-detr-SDI.yaml

    使用RT-DETR中的TransformerDecoderHead和U-NetV2中的 Semantics and Detail Infusion Module对yolov8中的feature fusion进行改进.

  33. ultralytics/cfg/models/yolo-detr/yolov8-detr-goldyolo.yaml

    利用RT-DETR中的TransformerDecoderHead和华为2023最新GOLD-YOLO中的Gatherand-Distribute进行改进特征融合模块.

  34. ultralytics/cfg/models/yolo-detr/yolov8-detr-goldyolo-asf.yaml

    利用RT-DETR中的TransformerDecoderHead和华为2023最新GOLD-YOLO中的Gatherand-Distribute和ASF-YOLO中的Attentional Scale Sequence Fusion进行改进特征融合模块.

  35. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-DCNV4.yaml

    使用DCNV4改进C2f.

  36. ultralytics/cfg/models/yolo-detr/yolov8-detr-HSFPN.yaml

    利用RT-DETR中的TransformerDecoderHead和使用MFDS-DETR中的HS-FPN改进YOLOV8中的PAN.

  37. ultralytics/cfg/models/yolo-detr/yolov8-detr-HSPAN.yaml

    利用RT-DETR中的TransformerDecoderHead和对MFDS-DETR中的HS-FPN进行二次创新后得到HSPAN改进YOLOV8中的PAN.

  38. ultralytics/cfg/models/yolo-detr/yolov8-detr-Dysample.yaml

    使用ICCV2023 DySample改进yolov8-detr neck中的上采样.

  39. ultralytics/cfg/models/yolo-detr/yolov8-detr-CARAFE.yaml

    使用ICCV2019 CARAFE改进yolov8-detr neck中的上采样.

  40. ultralytics/cfg/models/yolo-detr/yolov8-detr-HWD.yaml

    使用Haar wavelet downsampling改进yolov8-detr neck的下采样.

  41. ultralytics/cfg/models/yolo-detr/yolov8-detr-ASF-Dynamic.yaml

    使用ICCV2023 DySample改进ASF-YOLO中的Attentional Scale Sequence Fusion的上采样模块得到Dynamic Sample Attentional Scale Sequence Fusion改进yolov8-detr中的neck.

  42. ultralytics/cfg/models/yolo-detr/yolov8-detr-C2f-SWC.yaml

    使用shift-wise conv改进yolov8-detr中的C2f.

  43. ultralytics/cfg/models/yolo-detr/yolov8-detr-iRMB-DRB.yaml

    使用UniRepLKNet中的DilatedReparamBlock对EMO ICCV2023中的iRMB进行二次创新来改进yolov8-detr中的C2f.

  44. ultralytics/cfg/models/yolo-detr/yolov8-detr-iRMB-SWC.yaml

    使用shift-wise conv对EMO ICCV2023中的iRMB进行二次创新来改进yolov8-detr中的C2f.

以Yolov5为基准模型的改进方案

  1. ultralytics/cfg/models/yolo-detr/yolov5-detr.yaml

    使用RT-DETR中的TransformerDecoderHead改进yolov5.

  2. ultralytics/cfg/models/yolo-detr/yolov5-detr-DWR.yaml

    使用RT-DETR中的TransformerDecoderHead和DWRSeg中的Dilation-wise Residual(DWR)模块改进yolov5.

  3. ultralytics/cfg/models/yolo-detr/yolov5-detr-fasternet.yaml

    使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023改进yolov5.(支持替换其他主干,请看百度云视频-替换主干示例教程)

  4. ultralytics/cfg/models/yolo-detr/yolov5-detr-AIFI-LPE.yaml

    使用RT-DETR中的TransformerDecoderHead和LearnedPositionalEncoding改进yolov5.(详细介绍请看百度云视频-20231119更新说明)

  5. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV2.yaml

    使用RT-DETR中的TransformerDecoderHead和可变形卷积DCNV2改进yolov5.

  6. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV3.yaml

    使用RT-DETR中的TransformerDecoderHead和可变形卷积DCNV3 CVPR2023改进yolov5.(安装教程请看百度云视频-20231119更新说明)

  7. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV2-Dynamic.yaml

    使用RT-DETR中的TransformerDecoderHead和自研可变形卷积DCNV2-Dynamic改进yolov5.(详细介绍请看百度云视频-MPCA与DCNV2_Dynamic的说明)

  8. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Ortho.yaml(详细介绍请看百度云视频-20231119更新说明)

    使用RT-DETR中的TransformerDecoderHead和OrthoNets中的正交通道注意力改进yolov5.

  9. ultralytics/cfg/models/yolo-detr/yolov5-detr-attention.yaml

    添加注意力到基于RTDETR-Head中的yolov5中.(手把手教程请看百度云视频-手把手添加注意力教程)

  10. ultralytics/cfg/models/yolo-detr/yolov5-detr-p2.yaml

    添加小目标检测头P2到TransformerDecoderHead中.

  11. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DySnake.yaml

    DySnakeConv与C3融合.

  12. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Faster.yaml

    使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中的Faster-Block改进yolov5.

  13. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Faster-Rep.yaml

    使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与RepVGG CVPR2021中的RepConv二次创新后的Faster-Block-Rep改进yolov5.

  14. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Faster-EMA.yaml

    使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与EMA ICASSP2023二次创新后的Faster-Block-EMA的Faster-Block-EMA改进yolov5.

  15. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Faster-Rep-EMA.yaml

    使用RT-DETR中的TransformerDecoderHead和FasterNet CVPR2023中与RepVGG CVPR2021中的RepConv、EMA ICASSP2023二次创新后的Faster-Block改进yolov5.

  16. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-AKConv.yaml

    使用RT-DETR中的TransformerDecoderHead和AKConv 2023改进yolov5.

  17. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-RFAConv.yaml

    使用RT-DETR中的TransformerDecoderHead和RFAConv 2023改进yolov5.

  18. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-RFAConv.yaml

    使用RT-DETR中的TransformerDecoderHead和RFCAConv 2023改进yolov5.

  19. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-RFAConv.yaml

    使用RT-DETR中的TransformerDecoderHead和RFCBAMConv 2023改进yolov5.

  20. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-Conv3XC.yaml

    使用RT-DETR中的TransformerDecoderHead和Swift Parameter-free Attention Network中的Conv3XC改进yolov5.

  21. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-SPAB.yaml

    使用RT-DETR中的TransformerDecoderHead和Swift Parameter-free Attention Network中的SPAB改进yolov5.

  22. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DRB.yaml

    使用RT-DETR中的TransformerDecoderHead和UniRepLKNet中的DilatedReparamBlock改进改进yolov5.

  23. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-UniRepLKNetBlock.yaml

    使用RT-DETR中的TransformerDecoderHead和UniRepLKNet中的UniRepLKNetBlock改进改进yolov5.

  24. ultralytics/cfg/models/yolo-detr/yolov5-detr-DWR-DRB.yaml

    使用UniRepLKNet中的DilatedReparamBlock对DWRSeg中的Dilation-wise Residual(DWR)进行二次创新改进yolov5.

  25. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DBB.yaml

    使用RT-DETR中的TransformerDecoderHead和DiverseBranchBlock CVPR2021改进yolov5.

  26. ultralytics/cfg/models/yolo-detr/yolov5-detr-CSP-EDLAN.yaml

    使用RT-DETR中的TransformerDecoderHead和DualConv打造CSP Efficient Dual Layer Aggregation Networks改进yolov5.

  27. ultralytics/cfg/models/yolo-detr/yolov5-detr-ASF.yaml

    使用RT-DETR中的TransformerDecoderHead和ASF-YOLO中的Attentional Scale Sequence Fusion改进yolov5.

  28. ultralytics/cfg/models/yolo-detr/yolov5-detr-ASF-P2.yaml

    在ultralytics/cfg/models/yolo-detr/yolov5-detr-ASF.yaml的基础上进行二次创新,引入P2检测层并对网络结构进行优化.

  29. ultralytics/cfg/models/yolo-detr/yolov5-detr-slimneck.yaml

    使用RT-DETR中的TransformerDecoderHead和SlimNeck中VoVGSCSP\VoVGSCSPC和GSConv改进yolov5的neck.

  30. ultralytics/cfg/models/yolo-detr/yolov5-detr-slimneck-asf.yaml

    在ultralytics/cfg/models/yolo-detr/yolov5-detr-slimneck.yaml使用ASF-YOLO中的Attentional Scale Sequence Fusion进行二次创新.

  31. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-AggregatedAtt.yaml

    使用RT-DETR中的TransformerDecoderHead和TransNeXt中的聚合感知注意力改进C3.(百度云视频-20240106更新说明)

  32. ultralytics/cfg/models/yolo-detr/yolov5-detr-SDI.yaml

    使用RT-DETR中的TransformerDecoderHead和U-NetV2中的 Semantics and Detail Infusion Module对yolov5中的feature fusion进行改进.

  33. ultralytics/cfg/models/yolo-detr/yolov5-detr-goldyolo.yaml

    利用RT-DETR中的TransformerDecoderHead和华为2023最新GOLD-YOLO中的Gatherand-Distribute进行改进特征融合模块.

  34. ultralytics/cfg/models/yolo-detr/yolov5-detr-goldyolo-asf.yaml

    利用RT-DETR中的TransformerDecoderHead和华为2023最新GOLD-YOLO中的Gatherand-Distribute和ASF-YOLO中的Attentional Scale Sequence Fusion进行改进特征融合模块.

  35. ultralytics/cfg/models/yolo-detr/yolov5-detr-C3-DCNV4.yaml

    使用DCNV4改进C3.

  36. ultralytics/cfg/models/yolo-detr/yolov5-detr-HSFPN.yaml

    利用RT-DETR中的TransformerDecoderHead和使用MFDS-DETR中的HS-FPN改进YOLOV5中的PAN.

  37. ultralytics/cfg/models/yolo-detr/yolov5-detr-HSPAN.yaml

    利用RT-DETR中的TransformerDecoderHead和对MFDS-DETR中的HS-FPN进行二次创新后得到HSPAN改进YOLOV5中的PAN.

  38. ultralytics/cfg/models/yolo-detr/yolov8-detr-Dysample.yaml

    使用ICCV2023 DySample改进yolov8-detr neck中的上采样.

  39. ultralytics/cfg/models/yolo-detr/yolov8-detr-CARAFE.yaml

    使用ICCV2019 CARAFE改进yolov8-detr neck中的上采样.

  40. ultralytics/cfg/models/yolo-detr/yolov8-detr-HWD.yaml

    使用Haar wavelet downsampling改进yolov8-detr neck的下采样.

  41. ultralytics/cfg/models/yolo-detr/yolov5-detr-ASF-Dynamic.yaml

    使用ICCV2023 DySample改进ASF-YOLO中的Attentional Scale Sequence Fusion的上采样模块得到Dynamic Sample Attentional Scale Sequence Fusion改进yolov5-detr中的neck.

  42. ultralytics/cfg/models/yolo-detr/yolov5-detr-SWC.yaml

    使用shift-wise conv改进yolov5-detr中的C3.

  43. ultralytics/cfg/models/yolo-detr/yolov5-detr-iRMB-DRB.yaml

    使用UniRepLKNet中的DilatedReparamBlock对EMO ICCV2023中的iRMB进行二次创新来改进yolov5-detr中的C2f.

  44. ultralytics/cfg/models/yolo-detr/yolov5-detr-iRMB-SWC.yaml

    使用shift-wise conv对EMO ICCV2023中的iRMB进行二次创新来改进yolov5-detr中的C2f.

更新公告

  • 20231105-rtdetr-v1.0

    1. 初版项目发布.
  • 20231109-rtdetr-v1.1

    1. 修复断点训练不能正常使用的bug.
    2. 优化get_FPS.py中的模型导入方法.
    3. 增加以yolov5和yolov8为基准模型更换为RTDETR的Head,后续也会提供yolov5-detr,yolov8-detr相关的改进.
    4. 新增百度云视频-20231109更新说明视频和替换主干说明视频.
    5. 新增GhostHGNetV2,RepHGNetV2,详细请看使用教程中的RT-DETR改进方案.
    6. 新增使用DWRSeg中的Dilation-wise Residual(DWR)模块,加强从网络高层的可扩展感受野中提取特征,详细请看使用教程中的RT-DETR改进方案.
  • 20231119-rtdetr-v1.2

    1. 增加DCNV2,DCNV3,DCNV2-Dynamic,并以RTDETR-R18,RTDETR-R50,YOLOV5-Detr,YOLOV8-Detr多个基准模型进行改进,详细请看使用教程中的RT-DETR改进方案.
    2. 使用CVPR2022-OrthoNets中的正交通道注意力改进resnet18-backbone中的BasicBlock,resnet50-backbone中的BottleNeck,yolov8-C2f,yolov5-C3,详细请看使用教程中的RT-DETR改进方案.
    3. 使用LearnedPositionalEncoding改进AIFI中的位置编码信息生成,详细请看使用教程中的RT-DETR改进方案.
    4. 增加EMO模型中的iRMB模块,并使用(EfficientViT-CVPR2023)中的CascadedAttention对其二次创新得到iRMB_Cascaded,详细请看使用教程中的RT-DETR改进方案.
    5. 百度云视频增加1119更新说明和手把手添加注意力机制视频教学.
    6. 更新使用教程.
  • 20231126-rtdetr-v1.3

    1. 支持IoU,GIoU,DIoU,CIoU,EIoU,SIoU.
    2. 支持MPDIoU,Inner-IoU,Inner-MPDIoU.
    3. 支持Normalized Gaussian Wasserstein Distance.
    4. 支持小目标检测层P2.
    5. 支持DySnakeConv.
    6. 新增Pconv,PConv-Rep(二次创新)优化rtdetr-r18与rtdetr-r50.
    7. 新增Faster-Block,Faster-Block-Rep(二次创新),Faster-Block-EMA(二次创新),Faster-Block-Rep-EMA(二次创新)优化rtdetr-r18、rtdetr-r50、yolov5-detr、yolov8-retr.
    8. 更新使用教程.
    9. 百度云视频增加1126更新说明.
  • 20231202-rtdetr-v1.4

    1. 支持AKConv(具有任意采样形状和任意数目参数的卷积核).
    2. 支持RFAConv,RFCAConv,RFCBAMConv(感受野注意力卷积).
    3. 支持UniRepLKNet(大核CNNRepLK正统续作).
    4. 使用CVPR2022 DAttention改进AIFI.
    5. 更新使用教程.
    6. 百度云视频增加1202更新说明.
    7. 解决训练过程中由于指标出现的nan问题导致best.pt没办法正常保存.
  • 20231210-rtdetr-v1.5

    1. 支持来自Swift Parameter-free Attention Network中的重参数化Conv3XC模块.
    2. 支持UniRepLKNet中的DilatedReparamBlock.
    3. 支持UniRepLKNet中的DilatedReparamBlock对DWRSeg中的Dilation-wise Residual(DWR)模块进行二次创新的DWR_DRB.
    4. 使用ICCV2023 FLatten Transformer中的FocusedLinearAttention改进AIFI.
    5. 更新使用教程.
    6. 百度云视频增加1210更新说明.
  • 20231214-rtdetr-v1.6

    1. 支持DiverseBranchBlock.
    2. 利用DualConv打造CSP Efficient Dual Layer Aggregation Networks(仅支持yolov5-detr和yolov8-detr).
    3. 使用Swift Parameter-free Attention Network中的重参数化Conv3XC和DiverseBranchBlock改进RepC3.
    4. 支持最新的ASF-YOLO中的Attentional Scale Sequence Fusion.
    5. 更新使用教程.
    6. 百度云视频增加1214更新说明.
  • 20231223-rtdetr-v1.7

    1. 增加rtdetr-r18-asf-p2.yaml,使用ASF-YOLO中的Attentional Scale Sequence Fusion与Small Object Detection Head进行二次创新.
    2. 新增rtdetr-slimneck.yaml和rtdetr-slimneck-ASF.yaml.
    3. 新增yolov8-detr-slimneck.yaml,yolov8-detr-slimneck-asf.yaml.
    4. 新增yolov5-detr-slimneck.yaml,yolov5-detr-slimneck-asf.yaml.
    5. 修正热力图计算中预处理.
    6. 更新使用教程.
    7. 百度云视频增加1223更新说明.
  • 20240106-rtdetr-v1.8

    1. 新增Shape-IoU,Inner-Shape-IoU.
    2. 新增支持TransNeXt主干和TransNeXt中的聚焦感知注意力机制.
    3. 新增U-NetV2中的Semantics and Detail Infusion Module对RTDETR的CCFM进行创新.
    4. ASF系列支持attention_add.
    5. 更新使用教程.
    6. 百度云视频增加20240106更新说明.
  • 20240113-rtdetr-v1.9

    1. 支持Wise-IoU(v1,v2,v3)系列(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU).
    2. 支持Inner-Wise-IoU(v1,v2,v3)系列(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU).
    3. 支持SlideLoss,EMASlideLoss(利用Exponential Moving Average优化mean iou,可当自研创新模块).
    4. 使用华为2023最新GOLD-YOLO中的Gatherand-Distribute进行改进特征融合模块.
    5. 使用ASF-YOLO中Attentional Scale Sequence Fusion与GOLD-YOLO中的Gatherand-Distribute进行二次创新结合.
    6. 修正rtdetr-r34中检测头参数错误的问题,增加rtdetr-r34,rtdetr-r50-m的预训练权重.
    7. 更新使用教程.
    8. 百度云视频增加20240113更新说明.
  • 20240120-rtdetr-v1.10

    1. 新增DCNV4.
    2. 使用LITv2中具有提取高低频信息的高效注意力对AIFI进行二次改进.
    3. 使用MFDS-DETR中的HS-FPN改进RTDETR中的CCFM和YOLOV5-DETR、YOLOV8-DETR中的Neck.
    4. 对MFDS-DETR中的HS-FPN进行二次创新后得到HSPAN改进RTDETR中的CCFM和YOLOV5-DETR、YOLOV8-DETR中的Neck.
    5. 修复没有使用wiou时候断点续寻的bug.
    6. 修复plot_result.py画结果图中乱码的问题.
    7. 更新使用教程.
    8. 百度云视频增加20240120更新说明.
  • 20240128-rtdetr-v1.11

    1. 增加CARAFE轻量化上采样算子.
    2. 增加DySample(ICCV2023)动态上采样算子.
    3. 增加Haar wavelet downsampling下采样算子.
    4. 增加Focaler-IoU,Focaler-GIoU,Focaler-DIoU,Focaler-CIoU,Focaler-EIoU,Focaler-SIoU,Focaler-Shape-IoU,Focaler-MPDIoU.
    5. 增加Focaler-Wise-IoU(v1,v2,v3)(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU).
    6. 使用DySample(ICCV2023)动态上采样算子对ASF-YOLO中的Attentional Scale Sequence Fusion进行二次创新.
    7. 更新使用教程.
    8. 百度云视频增加20240128更新说明.
  • 20240206-rtdetr-v1.12

    1. 新增Shift-ConvNets相关改进内容.(rtdetr-SWC.yaml,rtdetr-R50-SWC.yaml,yolov8-detr-C2f-SWC.yaml,yolov5-detr-C3-SWC.yaml)
    2. 使用UniRepLKNet中的DilatedReparamBlock对EMO中的iRMB进行二次创新.
    3. 使用Shift-ConvNets中的具有移位操作的卷积对EMO中的iRMB进行二次创新.
    4. 更新使用教程.
    5. 百度云视频增加20240206更新说明.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/686323.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv8制作自定义数据集并训练

YOLOv8制作自定义数据集并训练 前言一、制作自定义数据集1、建立相应文件夹2、下载图片3、为图片打标签(1)安装labelimg(2)打开labelimg(3)标记图片 二、按比例移动自定义数据集中的内容三、建立数据集测试…

考虑分库分表的时机与问题

考虑分库分表的时机与问题 什么时候考虑分库分表? 在以下情况下,考虑分库分表可能是一个不错的选择: 数据量大:单一数据库已经无法满足数据存储和查询的需求,数据量巨大导致性能下降。并发量高:单一数据…

vue3-生产部署-性能优化

生产部署 开发环境 vs. 生产环境 在开发过程中,Vue 提供了许多功能来提升开发体验: 对常见错误和隐患的警告 对组件 props / 自定义事件的校验 响应性调试钩子 开发工具集成 然而,这些功能在生产环境中并不会被使用,一些警…

2024年危险化学品经营单位主要负责人证模拟考试题库及危险化学品经营单位主要负责人理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年危险化学品经营单位主要负责人证模拟考试题库及危险化学品经营单位主要负责人理论考试试题是由安全生产模拟考试一点通提供,危险化学品经营单位主要负责人证模拟考试题库是根据危险化学品经营单位主…

Unity3D 游戏开发中如何判断几何形状的位置关系详解

前言 在Unity3D游戏开发中,经常需要判断不同几何形状之间的位置关系,以便进行碰撞检测、物体运动和触发事件等操作。本文将详细介绍几种常见的几何形状位置关系判断方法,并给出相应的技术详解和代码实现。 对惹,这里有一个游戏开…

对链表使用插入排序的C语言实现示例

#include <stdio.h> #include <stdlib.h>// 定义链表节点结构体 struct ListNode {int val;struct ListNode *next; };// 插入排序函数 struct ListNode* insertionSortList(struct ListNode* head) {if (head NULL || head->next NULL) {return head;}struct…

【天衍系列 03】深入理解Flink的Watermark:实时流处理的时间概念与乱序处理

文章目录 01 基本概念02 工作原理03 优势与劣势04 核心组件05 Watermark 生成器 使用06 应用场景07 注意事项08 案例分析8.1 窗口统计数据不准8.2 水印是如何解决延迟与乱序问题&#xff1f;8.3 详细分析 09 项目实战demo9.1 pom依赖9.2 log4j2.properties配置9.3 Watermark水印…

机器学习入门--LSTM原理与实践

LSTM模型 长短期记忆网络&#xff08;Long Short-Term Memory&#xff0c;LSTM&#xff09;是一种常用的循环神经网络&#xff08;RNN&#xff09;变体&#xff0c;特别擅长处理长序列数据和捕捉长期依赖关系。本文将介绍LSTM模型的数学原理、代码实现和实验结果&#xff0c;并…

OpenCV库及在ROS中使用

OpenCV库及在ROS中使用 依赖 cv_bridge image_transport roscpp rospy sensor_msgs std_msgsCMakeLists.txt添加 find_package(OpenCV REQUIRED) include_directories(${OpenCV_INCLUDE_DIRS}) target_link_libraries(pub_img_topic ${catkin_LIBRARIES} ${Opencv_LIBS}) C …

基于springboot大学生租房系统源码和论文

伴随着全球信息化发展&#xff0c;行行业业都与计算机技术相衔接&#xff0c;计算机技术普遍运用于各大行业&#xff0c;大学生租房系统便是其中一种。实施计算机系统来管理可以降低大学生租房管理的成本&#xff0c;使整个大学生租房的发展和服务水平有显著提升。 本论文主要面…

Github Copilot是什么?Ai高效编程!一键远程授权…

GitHub Copilot是一款Ai编程插件&#xff0c;由OpenAi和Github联合推出&#xff0c;目前支持主流的IDE编辑器安装使用&#xff0c;包括JetBrains IDEs、VSCode、Visual Studio、Neovim等。 官方地址&#xff1a;https://github.com/features/copilot 官方文档&#xff1a;http…

VBA即用型代码手册之取消隐藏工作表及删除工作表

我给VBA下的定义&#xff1a;VBA是个人小型自动化处理的有效工具。可以大大提高自己的劳动效率&#xff0c;而且可以提高数据的准确性。我这里专注VBA,将我多年的经验汇集在VBA系列九套教程中。 作为我的学员要利用我的积木编程思想&#xff0c;积木编程最重要的是积木如何搭建…

基于Python的爬取天气数据及可视化分析

项目查看&#xff1a;基于Python的爬取天气数据及可视化分析 摘 要 天气数据视化系统是一种能自动从网络上收集水情信息分析的工具&#xff0c;可根据用户的需求定向采集特定天气数据信息来作可视化分析&#xff0c;自动在网络上获取网页源码。对于天气数据视化系统信息数量较…

【maya 入门笔记】基本视图和拓扑

1. 界面布局 先看基本窗口布局&#xff0c;基本窗口情况如下&#xff1a; 就基本窗口布局的情况来看&#xff0c;某种意义上跟blender更像一点&#xff08;与3ds max相比&#xff09;。 那么有朋友就说了&#xff0c;玛格基&#xff0c;那blender最下面的时间轴哪里去了&…

Shell:终端输入一个字符,判断是大写字母小写字母还是数字字符。

#!/bin/bash # 获取用户输入 read char case $char in [[:upper:]]) echo 大写 ;; [[:lower:]]) echo 小写 ;; [1-9]) echo 数字 ;; esac

使用PaddleNLP UIE模型提取上市公司PDF公告关键信息

项目地址&#xff1a;使用PaddleNLP UIE模型抽取PDF版上市公司公告 - 飞桨AI Studio星河社区 (baidu.com) 背景介绍 本项目将演示如何通过PDFPlumber库和PaddleNLP UIE模型&#xff0c;抽取公告中的相关信息。本次任务的PDF内容是破产清算的相关公告&#xff0c;目标是获取受理…

pubg开启之路

概要&#xff1a; pubg中文名绝地求生&#xff0c;一款免费游戏&#xff0c;本篇主要讲述如何在电脑上开始pubg 要想下载并开始玩pubg有两个方法(具体就是两个软件)&#xff0c;一个是epic games&#xff0c;另一个是steam 一、加速器是必要的吗&#xff1f; 1、不使用加速…

Pandas数据库大揭秘:read_sql、to_sql 参数详解与实战篇【第81篇—Pandas数据库】

Pandas数据库大揭秘&#xff1a;read_sql、to_sql 参数详解与实战篇 Pandas是Python中一流的数据处理库&#xff0c;而数据库则是数据存储和管理的核心。将两者结合使用&#xff0c;可以方便地实现数据的导入、导出和分析。本文将深入探讨Pandas中用于与数据库交互的两个关键方…

代码随想录 Leetcode135. 分发糖果

题目&#xff1a; 代码(首刷看解析 2024年2月15日&#xff09;&#xff1a; class Solution { public:int candy(vector<int>& ratings) {vector<int> left(ratings.size(), 1);vector<int> right(ratings.size(), 1);for (int i 1; i < ratings.si…

Docker安装和使用Redis

Docker安装和使用Redis 一、拉取 Redis 镜像二、根据镜像运行容器三、配置 Redis 密码1、进入 redis 容器内部2、使用 redis 命令行设置密码 一、拉取 Redis 镜像 docker pull redis二、根据镜像运行容器 docker run \ --name redis \-p 6379:6379 \-d \redis \redis-server …