【并发编程】ThreadPoolExecutor类

       📝个人主页:五敷有你      
 🔥系列专栏:并发编程
⛺️稳重求进,晒太阳

ThreadPoolExecutor

1) 线程池状态

ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量

状态名

高三位

接受新任务

处理阻塞队列任务

说明

RUNNING

111

Y

Y

SHUTDOWN

000

N

Y

不会接受新任务,但会处理阻塞队列剩余任务

STOP

001

N

N

会中断正在执行的任务,并抛弃阻塞队列任务

TIDYING

010

-

-

任务全执行完毕,任务线程为0即进入终结

TERMINATED

011

-

-

终结状态

从数字上比较,TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING

这些信息存储在一个原子变量 ctl 中,目的是将线程池状态与线程个数合二为一(赋值合二为一),这样就可以用一次 cas 原子操作进行赋值

// c 为旧值, ctlOf 返回结果为新值
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))));
// rs 为高 3 位代表线程池状态, wc 为低 29 位代表线程个数,ctl 是合并它们
private static int ctlOf(int rs, int wc) { return rs | wc; }

2) 构造方法

public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler)
  • corePoolSize 核心线程数目 (最多保留的线程数)
  • maximumPoolSize 最大线程数目
  • keepAliveTime 生存时间 - 针对救急线程
  • unit 时间单位 - 针对救急线程
  • workQueue 阻塞队列
  • threadFactory 线程工厂 - 可以为线程创建时起个好名字
  • handler 拒绝策略

工作方式:

流程

  • 线程池中刚开始没有线程,当一个任务提交给线程池后,线程池会创建一个新线程来执行任务。
  • 当线程数达到 corePoolSize 并没有线程空闲,这时再加入任务,新加的任务会被加入workQueue 队列排队,直到有空闲的线程。
  • 如果队列选择了有界队列,那么任务超过了队列大小时,会创建 maximumPoolSize - corePoolSize 数目的救急线程来救急。
  • 如果线程到达 maximumPoolSize 仍然有新任务这时会执行拒绝策略。拒绝策略 jdk 提供了 4 种实现,其它著名框架也提供了实现
    • AbortPolicy 让调用者抛出 RejectedExecutionException 异常,这是默认策略
    • CallerRunsPolicy 让调用者运行任务
    • DiscardPolicy 放弃本次任务
    • DiscardOldestPolicy 放弃队列中最早的任务,本任务取而代之
    • Dubbo 的实现,在抛出 RejectedExecutionException 异常之前会记录日志,并 dump 线程栈信息,方便定位问题Netty 的实现,是创建一个新线程来执行任务
    • ActiveMQ 的实现,带超时等待(60s)尝试放入队列,类似我们之前自定义的拒绝策略
    • PinPoint 的实现,它使用了一个拒绝策略链,会逐一尝试策略链中每种拒绝策略
  • 当高峰过去后,超过corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由keepAliveTime 和 unit 来控制。

根据这个构造方法,JDK Executors 类中提供了众多工厂方法来创建各种用途的线程池

3) newFixedThreadPool

public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue());}

特点

核心线程数 == 最大线程数(没有救急线程被创建),因此也无需超时时间

阻塞队列是无界的,可以放任意数量的任务

评价:

适用于任务量已知,相对耗时的任务。

线程工厂的使用

ExecutorService executorService = Executors.newFixedThreadPool(2, new ThreadFactory() {private AtomicInteger t=new AtomicInteger(1);@Overridepublic Thread newThread(Runnable r) {return new Thread(r,"t"+t.getAndIncrement());}
});

4) newCachedThreadPool

public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>());}

特点

  • 核心线程数是 0, 最大线程数是 Integer.MAX_VALUE,救急线程的空闲生存时间是 60s,意味着
    • 全部都是救急线程(60s 后可以回收)
    • 救急线程可以无限创建
  • 队列采用了 SynchronousQueue 实现特点是,它没有容量,没有线程来取是放不进去的(一手交钱、一手交货)
SynchronousQueue<Integer> integers = new SynchronousQueue<>();
new Thread(() -> {try {log.debug("putting {} ", 1);integers.put(1);log.debug("{} putted...", 1);log.debug("putting...{} ", 2);integers.put(2);log.debug("{} putted...", 2);} catch (InterruptedException e) {e.printStackTrace();}
},"t1").start();
sleep(1);
new Thread(() -> {try {log.debug("taking {}", 1);integers.take();} catch (InterruptedException e) {e.printStackTrace();}
},"t2").start();
sleep(1);
new Thread(() -> {try {log.debug("taking {}", 2);integers.take();} catch (InterruptedException e) {e.printStackTrace();}
},"t3").start();

输出

评价

整个线程池表现为线程数会根据任务量不断增加,没有上限,当任务执行完毕,空闲一分钟后释放线程。

适合任务数比较密集,但每个任务执行时间比较短的情况

5)newSingleThreadExecutor

public static ExecutorService newSingleThreadExecutor(){return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));
}

使用场景

希望多个任务排队执行。线程数固定为 1,任务数多于 1 时,会放入无界队列排队。任务执行完毕,这唯一的线程也不会被释放。

区别:

  • 自己创建一个单线程串行执行任务,如果任务执行失败而终止那么没有任何补救措施,而线程池还会新建一个线程,保证池的正常工作
  • Executors.newSingleThreadExecutor() 线程个数始终为1,不能修改
    • FinalizableDelegatedExecutorService 应用的是装饰器模式,只对外暴露了 ExecutorService 接口,因此不能调用 ThreadPoolExecutor 中特有的方法
  • Executors.newFixedThreadPool(1) 初始时为1,以后还可以修改
    • 对外暴露的是 ThreadPoolExecutor 对象,可以强转后调用 setCorePoolSize 等方法进行修改

6)提交任务

// 执行任务
void execute(Runnable command);// 提交任务 task,用返回值 Future 获得任务执行结果 
<T> Future submit(Callable task);// 提交 tasks 中所有任务 
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) throws InterruptedException;// 提交 tasks 中所有任务,带超时时间 
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException;// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消<T> T invokeAny(Collection<? extends Callable<T>> tasks) throws InterruptedException, ExecutionException;// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消,带超时时间<T> T invokeAny(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException;

使用:

List<Future<Object>> futures = executorService.invokeAll(Arrays.asList(() -> {return "徐烁大美女";},() -> {return "赵菁大美女";}));
for (Future<Object> future : futures) {System.out.println(future.get());
}
/*********************/
Object o = executorService.invokeAny(Arrays.asList(() -> {return "徐烁大美女";},() -> {return "赵菁大美女";}));
System.out.println(o);

7) 关闭线程池

shutdown

/*线程池状态变为 SHUTDOWN
- 不会接收新任务
- 但已提交任务会执行完
- 此方法不会阻塞调用线程的执行:就是主线程调用后,会继续向下执行,不会等待其他线程执行完*/void shutdown();
public void shutdown() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); // 修改线程池状态 advanceRunState(SHUTDOWN); // 仅会打断空闲线程 interruptIdleWorkers(); onShutdown(); // 扩展点 ScheduledThreadPoolExecutor } finally { mainLock.unlock(); } // 尝试终结(没有运行的线程可以立刻终结,如果还有运行的线程也不会等) tryTerminate();}

shutdownNow

/*线程池状态变为 STOP
- 不会接收新任务
- 会将队列中的任务返回
- 并用 interrupt 的方式中断正在执行的任务*/
List shutdownNow();
public List shutdownNow() {List tasks; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); // 修改线程池状态 advanceRunState(STOP); // 打断所有线程 interruptWorkers(); // 获取队列中剩余任务 tasks = drainQueue(); } finally {mainLock.unlock(); } // 尝试终结 tryTerminate();return tasks;}

其它方法

// 不在 RUNNING 状态的线程池,此方法就返回 
trueboolean isShutdown();
// 线程池状态是否是 TERMINATED
boolean isTerminated();
// 调用 shutdown 后,由于调用线程并不会等待所有任务运行结束,因此如果它想在线程池 TERMINATED 后做些事情,可以利用此方法等待
boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/683176.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

rtt设备io框架面向对象学习-uart设备

目录 1.uart设备基类2.uart设备基类的子类3.初始化/构造流程3.1设备驱动层3.2 设备驱动框架层3.3 设备io管理层 4.总结5.使用 1.uart设备基类 此层处于设备驱动框架层。也是抽象类。 在/ components / drivers / include / drivers 下的serial.h定义了如下uart设备基类 struc…

Transformer实战-系列教程18:DETR 源码解读5(BackboneBase类/Backbone类)

&#x1f6a9;&#x1f6a9;&#x1f6a9;Transformer实战-系列教程总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 点我下载源码 DETR 算法解读 DETR 源码解读1&#xff08;项目配置/CocoDetection类&#xff09; …

我的NPI项目之嵌入式总线系列(一) -- SPI 接口

如我的NPI项目之Android 安全系列 -- 外挂SE集成&#xff08;SPI&#xff09;接口-CSDN博客 提到SPI的接口&#xff0c;基本的电气特性已经给出。这边文章就针对协议部分进行详细解析。从协议网找到了原文&#xff1a;SPI protocol 还有wilipedia SPI 主要涉及一下几个方面&a…

bat 定时收缩sqlserver2017

如果你希望使用批处理&#xff08;.bat&#xff09;文件来定时收缩SQL Server的数据库&#xff0c;你可以编写一个脚本来执行这个任务。但首先&#xff0c;需要注意的是&#xff0c;定期收缩数据库通常不是一个好的做法&#xff0c;因为它可能会对性能产生负面影响&#xff0c;…

全闭环直播推流桌面分享远控系统

直播推流涉及多协议&#xff0c;多端技术栈和知识点&#xff0c;&#xff0c;想要做好并不容易&#xff0c;经过几年时间的迭代&#xff0c;终于小有成就&#xff0c;聚集了媒体服务器&#xff0c;实时会议sfu&#xff0c;远控kvm等功能。可以做一个音视频应用的瑞士小军刀。主…

详解Vue文件结构+实现一个简单案例

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…

测试开发-2-概念篇

文章目录 衡量软件测试结果的依据—需求1.需求的概念2.从软件测试人员角度看需求3.为什么需求对软件测试人员如此重要4.如何才可以深入理解被测试软件的需求5.测试用例的概念6.软件错误&#xff08;BUG&#xff09;的概念7.开发模型和测试模型8.软件的生命周期9.瀑布模型&#…

MATLAB知识点:randperm函数(★★★★★)将一个数字序列进行随机打乱

​讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 节选自第3章&#xff1a;课后习题讲解中拓展的函数 在讲解第…

Codeforces Round 923 - A.B.C.D

文章目录 A. Make it WhiteB. Following the StringC.Choose the Different Ones!D. Find the Different Ones! A. Make it White #include<bits/stdc.h>using namespace std;void solve() {int n;cin >> n;string s; cin >> s;int flag 0;int x 0, y -1…

django中admin页面汉化

在Django中&#xff0c;将admin界面汉化为中文需要进行一些配置和翻译文件的添加。下面是一个基本的步骤指南&#xff0c;帮助你实现Django admin的汉化&#xff1a; 一&#xff1a;安装并配置Django: 如果你还没有安装Django&#xff0c;首先通过pip安装它&#xff1a; pip…

【开源训练数据集1】神经语言程式(NLP)项目的15 个开源训练数据集

一个聊天机器人需要大量的训练数据,以便在无需人工干预的情况下快速解决用户的询问。然而,聊天机器人开发的主要瓶颈是获取现实的、面向任务的对话数据来训练这些基于机器学习的系统。 我们整理了训练聊天机器人所需的对话数据集,包括问答数据、客户支持数据、对话数据和多…

ESP32学习(1)——环境搭建

使用的ESP32板子如下图所示 它可以用Arduino 软件&#xff0c;基于C语言开发。但是&#xff0c;在这里&#xff0c;我是用Thonny软件&#xff0c;基于micro_python对其进行开发。 1.安装Thonny Thonny的软件安装包&#xff0c;可以去它官网上下载。Thonny, Python IDE for begi…

【MySQL】学习外键约束处理员工数据

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-g4glZPIY0IKhiTfe {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

【原理解密】多角度、多尺度、多目标的边缘模板匹配

学习《OpenCV应用开发&#xff1a;入门、进阶与工程化实践》一书 做真正的OpenCV开发者&#xff0c;从入门到入职&#xff0c;一步到位&#xff01; 边缘模板匹配的基本原理 OpenCV中自带的模板匹配算法&#xff0c;完全是像素基本的模板匹配&#xff0c;特别容易受到光照影…

【剪映】如何使用曲线变速?

如何使用曲线变速 进入视频编辑界面后&#xff0c;选中视频&#xff0c;点击下方工具栏的-【变速】-【曲线变速】&#xff0c;进入后可以看到七个预设变速&#xff0c;其中后六个为系统自带预设变速&#xff0c;每个预设变速效果不同&#xff0c;直接点击这六个预设&#xff0c…

Python一些可能用的到的函数系列124 GlobalFunc

说明 GlobalFunc是算网的下一代核心数据处理基础。 算网是一个分布式网络&#xff0c;为了能够实现真的分布式计算&#xff08;加快大规模任务执行效率&#xff09;&#xff0c;以及能够在很长的时间内维护不同版本的计算方法&#xff0c;需要这样一个对象/服务来支撑。Globa…

如何使用python在三天内制作出一个赛车游戏

制作一个赛车游戏是一个复杂的过程&#xff0c;涉及多个方面&#xff0c;如游戏设计、图形渲染、物理引擎、用户输入处理等。在三天内完成这个任务可能非常具有挑战性&#xff0c;特别是如果你是初学者。但如果你有基本的Python编程知识和一些游戏开发经验&#xff0c;以下是一…

尚硅谷最新Node.js 学习笔记(三)

目录 六、Node.js 模块化 6.1、介绍 什么是模块化与模块&#xff1f; 什么是模块化项目&#xff1f; 模块化好处 6.2、模块暴露数据 模块初体验 暴露数据 6.3、导入&#xff08;引入&#xff09;模块 6.4、导入模块的基本流程 6.5、CommonJS规范 七、包管理工具 7…

Win 10 如何升级 Win 11

方法一&#xff1a; 设置->Windows 更新->检查更新 然后会有许多要下载更新的&#xff0c;期间会要求多次重启&#xff0c;每次重启完之后再检查更新&#xff0c;直到显示是最新&#xff0c;然后一般会有一个Win11的入口&#xff0c;点这里就可以了。 我很久之前升的&…

Java-数组遍历

for循环遍历 具体描述 假设有一个数组nums,设置初始条件i0,即从数组的第一个开始,循环结束条件为i<nums.length,即数组中所有元素的数量&#xff0c;设置更新条件i,即依次遍历完数组中所有元素 实例&#xff1a; public class demo04 {public static void main(String[]…