RAG (Retrieval Augmented Generation)简介

1. 背景

目前大模型很多,绝大部分大模型都是通用型大模型,也就是说使用的是标准的数据,比如wikipedia,百度百科,。。。。 中小型企业一般都有自己的知识库,而这些知识库的数据没有在通用型的大模型中被用到或者说训练到。如果中小型企业要适合自己本身业务需要的大模型,当然理想的方法是重新训练数据,而这些数据有其自身业务场景的数据。 现实是自身训练无论是人力成本,数据成本,计算成本都是不可行的。那么一种基于通用大模型,并外挂本地知识库的人工智能方法RAG(Retrieval Augmented Generation)就运用而生。通过这种方法,中小型企业可以用很少的人力,物力,在不改动通用大模型的情况下,就能结合自身需要,为自己的业务场景服务。

2. 框架图和简单介绍

接下来,我们就来介绍RAG。我们先看标准的RAG流程或框架图,然后在下面的文字中介绍两种优化的RAG,我们还会给出处于研究中或朦胧状态的新的RAG的出处或文献参考。本文是基于下面的LLM或RAG课程的总结。【1】【2】【3】。

2.1 入库

那么现在,让我们先看标准的RAG流程或框架图:先是第一步入库,入库就是把原始分本分割,然后每个分割后的短文本,进行分词,然后向量映射,最后入库。

                                                        RAG 第一步入库

                                                            图 1

图1 是RAG的第一步,文本入库。库可以是一般数据库,文件系统都可以,我们这里用向量数据库作为例子。像目前的智能客服机器人,一般就是使用向量数据库。

2.1.1 分本分割

其中,文本分割是因为背景提示窗口大小的限制,一般只有几千个Token。Token是指最小的单词,字符和词组的向量。

                                                          图 2

从图中,我们看出框架图组件有向量数据库(Vector Database)和大模型。向量数据库存储着中小企业的业务场景的本地知识库,用户先从向量数据库,就是本地知识库查询,然后将查询的结果作为大模型的输入,进行查询。

2.2 RAG 查询

入库成功以后,就是查询,然后就是augmented,augmented在这里是指将查询和向量数据库查出的结果合成作为一个新的提示,然后查询LLM(大语言模型)。 

 ​​​​​​​​​​​​​​

                                                                     图 3                                   
2.2.1 提示查询

当我们开始查询时,我们先查询本地知识库,就是向量数据库,然后向量数据库抽取数据,回复提问。就是图3中的第1,2,3步骤。

2.2.2 合成答复和查询

当向量数据库回复后,我们将查询向量数据库的问题和向量数据库的回答合成一个提示,再查询大语言模型。就是图3中的4,5步骤。

2.2.3 大模型回复/completion

合成后的提示输入到大模型中,得到回复/completion,就完成了一次RAG。 

3. 高级/优化的RAG

A. Query expansion

待下文发表

B. Cross-encoding DeRank

待下文发表

4. 处于朦胧时期的高级RAG

                                                图 4

5. 参考资料

[1]. coursera.org:Generative AI with large language model

[2]. deepLearning.ai:Advanced Retrieval for AI with Chroma

[3]. deep learning.ai:   Building and Evaluating Advanced RAG Applications

[4] 领英LLM的一些专栏

沈建军于上海 2024年2月14日周三

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/682649.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

openGauss学习笔记-219 openGauss性能调优-确定性能调优范围-硬件瓶颈点分析-网络

文章目录 openGauss学习笔记-219 openGauss性能调优-确定性能调优范围-硬件瓶颈点分析-网络219.1 查看网络状况 openGauss学习笔记-219 openGauss性能调优-确定性能调优范围-硬件瓶颈点分析-网络 获取openGauss节点的CPU、内存、I/O和网络资源使用情况,确认这些资源…

C# CAD2016 宗地生成界址点,界址点编号及排序

1 、界址点起点位置C# CAD2016 多边形顶点按方向重新排序 2、 界址点顺时针逆时针走向 C# CAD2016 判断多边形的方向正时针或逆时针旋转 3、块文件插入 //已知块文件名称 GXGLQTC //块文件需要插入的坐标点 scaledPoint// 插入块到当前图纸中的指定位置ObjectId newBlockId;B…

重复导航到当前位置引起的。Vue Router 提供了一种机制,阻止重复导航到相同的路由路径。

代码&#xff1a; <!-- 侧边栏 --><el-col :span"12" :style"{ width: 200px }"><el-menu default-active"first" class"el-menu-vertical-demo" select"handleMenuSelect"><el-menu-item index"…

python-分享篇-五子棋

文章目录 代码效果 代码 """五子棋之人机对战"""import sys import random import pygame from pygame.locals import * import pygame.gfxdraw from checkerboard import Checkerboard, BLACK_CHESSMAN, WHITE_CHESSMAN, offset, PointSIZE 3…

JVM(1)基础篇

1 初始JVM 1.1 什么是JVM JVM 全称是 Java Virtual Machine&#xff0c;中文译名 Java虚拟机。JVM 本质上是一个运行在计算机上的程序&#xff0c;他的职责是运行Java字节码文件。 Java源代码执行流程如下&#xff1a; 分为三个步骤&#xff1a; 编写Java源代码文件。 使用…

Android实现底部导航栏方法(Navigation篇)

Navigation实现底部导航栏 前言导入和基本使用导入基础使用创建nav文件编辑Nav文件添加页面&#xff08;代码版&#xff09;添加页面&#xff08;图解版&#xff09; 创建导航动作 action创建action&#xff08;代码版&#xff09;创建action&#xff08;图解版&#xff09; 编…

「C++ 类和对象篇 12」static成员

目录 一、static成员是什么&#xff1f; 二、为什么需要static成员&#xff1f; 三、怎么使用static成员&#xff1f; 1. 定义static成员变量 2. 定义static成员函数 3. 访问static成员 四、特性 【面试题】 【总结】 一、static成员是什么&#xff1f; 被static修饰的类成…

品牌之门:概率与潜力的无限延伸

在品牌的世界里&#xff0c;每一个成功的推广都像是打开一扇门&#xff0c;从未知走向已知&#xff0c;从潜在走向显现。这扇门&#xff0c;既是品牌的起点&#xff0c;也是品牌发展的无限可能。 品牌&#xff0c;就像一扇紧闭的门&#xff0c;它静静地矗立在那里&#xff0c;…

微信强制分享红包裂变系统源码

这是一款新型的微信裂变引流系统源码&#xff0c;支持试看、直播、朋友圈转发、分享任务、 邀请入群、群聊、红包等多种裂变引流方式&#xff0c;让你的广告流量引流、吸粉变现更加高效。 该系统源码还优化了整个页面&#xff0c;减少了繁重多余的代码&#xff0c;让访问速度…

【51单片机】直流电机驱动(PWM)(江科大)

1.直流电机介绍 直流电机是一种将电能转换为机械能的装置。一般的直流电机有两个电极,当电极正接时,电机正转,当电极反接时,电机反转 直流电机主要由永磁体(定子)、线圈(转子)和换向器组成 除直流电机外,常见的电机还有步进电机、舵机、无刷电机、空心杯电机等 2.电机驱动…

对(一维)数组与指针的深入理解(1)

目录 1.数组名的理解2.使用指针访问&#xff08;一维&#xff09;数组3.&#xff08;一维&#xff09;数组传参的本质 1.数组名的理解 以前我们在使用指针访问数组内容时&#xff0c;有这样的代码&#xff1a; #include <stdio.h>int main() {int arr[10] { 1,2,3,4,5…

详解Qt多线程(包含:什么是CPU,单核处理器和多核处理器,举餐厅和QQ音乐的例子详解进程和线程,Qt多线程案例)

目录 一.什么是CPU&#xff1f;二.单核处理器与多核处理器三.什么是进程和线程&#xff1f;3.1 定义3.2 以餐厅为例子解释进程和线程3.2 以QQ音乐为例子&#xff0c;解释QQ音乐里面的进程和线程 四.Qt中的多线程五.Qt多线程案例任务描述案例演示设置显示内容的字体大小和位置运…

pands常用操作

1.导入库和文件读取和文件分信息分析 import pandas as pd import numpy as np csvf pd.read_csv(D:/各个站程序版本说明.csv) csvf.info() <class pandas.core.frame.DataFrame> RangeIndex: 51 entries, 0 to 50 Data columns (total 6 columns):# Column Non-Nul…

java面试题整理

2023.2.14&#xff08;第二天&#xff09; 数组是不是对象&#xff1f; 在Java中&#xff0c;数组是对象。数组是一种引用类型&#xff0c;它可以存储固定大小的相同类型的元素序列。在Java中&#xff0c;数组是通过new关键字创建的&#xff0c;它们在内存中被分配为对象&…

「数据结构」MapSet

&#x1f387;个人主页&#xff1a;Ice_Sugar_7 &#x1f387;所属专栏&#xff1a;Java数据结构 &#x1f387;欢迎点赞收藏加关注哦&#xff01; Map&Set &#x1f349;概念&#x1f349;模型&#x1f349;Map&#x1f34c;TreeMap和HashMap的区别&#x1f34c;Map常用方…

2048游戏C++板来啦!

个人主页&#xff1a;PingdiGuo_guo 收录专栏&#xff1a;C干货专栏 大家好呀&#xff0c;我是PingdiGuo_guo&#xff0c;今天我们来学习如何用C编写一个2048小游戏。 文章目录 1.2048的规则 2.步骤实现 2.1: 初始化游戏界面 2.1.1知识点 2.1.2: 创建游戏界面 2.2: 随机…

Days 31 ElfBoard 自启脚本中打开看门狗

1.在开机自启脚本中打开看门狗 rootELF1:~# vi /etc/rc.local 2.在自启脚本中添加上之后&#xff0c;然后在咱们的QT界面中找到看门狗应用&#xff0c; 发现显示打开看门狗失败&#xff1a; 3.修改看门狗源码&#xff0c;设置了超时时间后&#xff0c;关闭/dev/dev/watchdog节…

【Tomcat】:One or more listeners failed to start.报错解决方案

报错信息:One or more listeners failed to start. Full details will be found in the appropriate container log file. 具体就是web.xml此配置报错: 服务器启动错误Tomcat:One or more listeners failed to start.报错解决方案 IDEA:在使用IDEA运行SSM项目的时候 , Tomcat运…

error MSB8008: 指定的平台工具集(v143)未安装或无效。请确保选择受支持的 PlatformToolset 值解决办法

右击解决方案&#xff0c;选择属性 将工具集为143的修改为其他&#xff0c;如图 重新编译即可运行

网络原理(3)--以太网协议,DNS

&#x1f495;"Echo"&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;网络原理(3)–以太网协议,DNS 在网络原理(2)中介绍了网络层中的一个重要的协议–ip协议,网络层关注的通信时的起点和终点,而数据链路层更加"底层"一些,关注的是传输过程…