【数据结构】二叉树的顺序结构及链式结构

目录

1.树的概念及结构

1.1树的概念

1.2树的相关概念

​编辑

 1.3树的表示

 1.4树在实际中的运用(表示文件系统的目录树结构)

2.二叉树概念及结构

2.1二叉树的概念

2.2现实中的二叉树

​编辑 

2.3特殊的二叉树

2.4二叉树的性质

2.5二叉树的存储结构

3 .二叉树链式结构的实现

3.1二叉树的创建

3.2二叉树的遍历

3.21前序、中序以及后序遍历

3.22层序遍历


1.树的概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  • 有一个特殊的结点,称为根结点,根节点没有前驱结点
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构 

1.2树的相关概念

  • 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
  • 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
  • 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
  • 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
  • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙 
  • 森林:由m(m>0)棵互不相交的树的集合称为森林; 

 1.3树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间 的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

typedef int DataType;
struct Node
{struct Node* _firstChild1; // 第一个孩子结点struct Node* _pNextBrother; // 指向其下一个兄弟结点DataType _data; // 结点中的数据域
};

 1.4树在实际中的运用(表示文件系统的目录树结构)

 


 

2.二叉树概念及结构

2.1二叉树的概念

一颗二叉树的节点是一个有限的集合,该集合只有俩种可能:

1.为空指针

2.由一个根节点和俩个分别称为左子树和右子树的二叉组成

由上图可知:

1. 二叉树不存在度大于2的结点

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树                                          注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.2现实中的二叉树

 

 

2.3特殊的二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是2的k次方-1 ,则它就是满二叉树。

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。 

2.4二叉树的性质

1.若规定根节点的层数为1,则一颗非空二叉树的第i层最多有2(^2^-1)个结点。

2.若规定根节点的层数为1,则深度为h的二叉树的最大节点数是2(^h^)-1.

3.堆任何一颗二叉树,如果度为0其叶结点个数为n0,度为2的分支结点个数为n2,则有n0=n2+1.

4.若规定根节点的层数为1,则有n个结点的满二叉树的深度,h=log2(n+1).(ps:log2(n+1)是以2为底,n+1为对数)

5.对于具有n个节点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的节点有:

1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

2. 若2i+1=n否则无左孩子

3. 若2i+2=n否则无右孩子

2.5二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1. 顺序存储 :顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们前面的章节有专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。 

2. 链式存储 :二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链三叉链,当前我们学习中一般都是二叉链,后面会学到高阶数据结构如红黑树等会用到三叉链。 

 

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{struct BinTreeNode* _pLeft; // 指向当前节点左孩子struct BinTreeNode* _pRight; // 指向当前节点右孩子BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{struct BinTreeNode* _pParent; // 指向当前节点的双亲struct BinTreeNode* _pLeft; // 指向当前节点左孩子struct BinTreeNode* _pRight; // 指向当前节点右孩子BTDataType _data; // 当前节点值域
};

 


3 .二叉树链式结构的实现

3.1二叉树的创建

 首先,我们这里先简单创建一个以中序遍历的二叉树结构,可以使用前序,中序,后序,下面会具体讲到遍历。

typedef struct BTNode
{char _data;struct BTNode* _left;struct BTNode* _right;
}BTNode;//中序遍历
void Inorder(BTNode* root)
{if(root){Inorder(root->_left);printf("%c ", root->_data);Inorder(root->_right);}
}BTNode* CreatBTree(char* str, int* pi)
{if(str[*pi]!= '#'){//当前节点非空,则创建当前节点BTNode*root=(BTNode*)malloc(sizeof(BTNode));root->_data = str[*pi];//字符位置向后移动一个位置++(*pi);//创建左子树root->_left=CreatBTree(str,pi);//字符位置向后移动一个位置++(*pi);//创建右子树root->_right=CreatBTree(str,pi);return root;}elsereturn NULL;  //如果是空节点,则返回NULL
}int main()
{char str[101];int i = 0;//读入字符串scanf("%s", str);//创建二叉树BTNode* root = CreatBTree(str, &i);//中序打印二叉树Inorder(root);printf("\n");return 0;
}

3.2二叉树的遍历

3.21前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历

1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。

2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。

3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为 根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。 

// 二叉树前序遍历
void PreOrder(BTNode* root);
// 二叉树中序遍历
void InOrder(BTNode* root);
// 二叉树后序遍历
void PostOrder(BTNode* root);

前序,中序和后序遍历图解:

 

3.22层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在 层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层 上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。 

 

// 层序遍历
void LevelOrder(BTNode* root);

 


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/678075.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从信息隐藏到功能隐藏

本文主要记录复旦大学张新鹏教授于2022年12月在第三届CSIG中国媒体取证与安全大会上的汇报

假期刷题打卡--Day29

1、MT1224棋盘 求一个N*N棋盘中的方块总数。 格式 输入格式&#xff1a; 输入整型N 输出格式&#xff1a; 输出整型 样例 1 输入&#xff1a; 2输出&#xff1a; 5备注 考虑到取值范围&#xff0c;可用long整型定义变量 分析过程 这个题目的意思是&#xff0c;在这…

Docker 容器网络:C++ 客户端 — 服务器应用程序。

一、说明 在下面的文章中&#xff0c; 将向您概述 docker 容器之间的通信。docker 通信的验证将通过运行 C 客户端-服务器应用程序和标准“ping”命令来执行。将构建并运行两个单独的 Docker 映像。 由于我会关注 docker 网络方面&#xff0c;因此不会提供 C 详细信息。…

【Linux】学习-进程信号

进程信号 信号入门 生活角度的信号 你在网上买了很多件商品,再等待不同商品快递的到来。但即便快递没有到来,你也知道快递来临时,你该怎么处理快递。也就是你能“识别快递”,也就是你意识里是知道如果这时候快递员送来了你的包裹,你知道该如何处理这些包裹当快递员到了你…

[C# WPF] DataGrid选中行或选中单元格的背景和字体颜色修改

问题描述 WPF中DataGrid的选中行或选中者单元格&#xff0c;在焦点失去后&#xff0c;颜色会很淡&#xff0c;很不明显&#xff0c;不容易区分。 解决方法 在失去焦点的情况下&#xff0c;如何设置行或单元格与选中的时候颜色一样&#xff1f; <DataGrid.Resources>&…

华为问界M9:领跑未来智能交通的自动驾驶黑科技

华为问界M9是一款高端电动汽车&#xff0c;其自动驾驶技术是该车型的重要卖点之一。华为在问界M9上采用了多种传感器和高级算法&#xff0c;实现了在不同场景下的自动驾驶功能&#xff0c;包括自动泊车、自适应巡航、车道保持、自动变道等。 华为问界M9的自动驾驶技术惊艳之处…

第206篇| 新年有趣的产品发现;所谓正确的价值观

这是2024年一月份flomo和notion 上聚合的系列文章之&#xff08;02&#xff09;&#xff1b; 具体方法用的是这个 &#xff1a; 【知识沙虫&#xff0c;一个简单易用的知识体系建模工具】https://mp.weixin.qq.com/s/V2Cdq-1PbMQYvpE4o9NLpQ 首先&#xff0c;方法用下来还是很…

面向对象编程:理解其核心概念与应用

引言 在编程的世界中&#xff0c;面向对象编程&#xff08;Object-Oriented Programming, OOP&#xff09;已成为一种主流的编程范式。它提供了一种组织和管理代码的有效方式&#xff0c;使得代码更加模块化、可重用和易于维护。本文将带您深入探讨面向对象编程的核心概念及其…

算法学习——LeetCode力扣双指针篇

算法学习——LeetCode力扣双指针篇1 27. 移除元素 27. 移除元素 - 力扣&#xff08;LeetCode&#xff09; 描述 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用额外的数组空间&#…

软考 系统分析师系列知识点之信息系统战略规划方法(5)

接前一篇文章&#xff1a;软考 系统分析师系列知识点之信息系统战略规划方法&#xff08;4&#xff09; 所属章节&#xff1a; 第7章. 企业信息化战略与实施 第4节. 信息系统战略规划方法 7.4.3 战略集合转化法 战略目标集合转化法&#xff08;Strategy Set Transformation&a…

【AIGC风格prompt深度指南】掌握绘画风格关键词,实现艺术模仿的革新实践

[小提琴家]ASCII风格&#xff0c;点&#xff0c;爆炸&#xff0c;光&#xff0c;射线&#xff0c;计算机代码 由冰和水制成的和平标志]非常详细&#xff0c;寒冷&#xff0c;冰冻&#xff0c;大气&#xff0c;照片逼真&#xff0c;流动&#xff0c;16K 胡迪尼模拟火和水&#x…

【计算机网络】进程通信

进程 process 客户和服务器进程 下载文件表示为客户 &#xff0c;上载文件的对等方表示为服务器进程与计算机网络之间的接口 套接字 socket 应用层与传输层之间的接口是建立网络应用程序的可编程接口 API进程寻址 为了标识接收进程 需要两种信息 主机的地址目的主机中的接收进程…

ShardingSphere 5.x 系列【7】元数据持久化

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列ShardingSphere 版本 5.4.0 源码地址:https://gitee.com/pearl-organization/study-sharding-sphere-demo 文章目录 概述2. 单机模式2.1 H22.2 MySQL3. 集群模式3.1 ZooKeeper3.2 Nacos3.3 Cons…

Java图形化界面编程——组件绘图原理 笔记

2.8 绘图 ​ 很多程序如各种小游戏都需要在窗口中绘制各种图形&#xff0c;除此之外&#xff0c;即使在开发JavaEE项目时&#xff0c; 有 时候也必须"动态"地向客户 端生成各种图形、图表&#xff0c;比如 图形验证码、统计图等&#xff0c;这都需要利用AWT的绘图功…

C 练习实例23-打印菱形

题目&#xff1a;打印出如下图案&#xff08;菱形&#xff09;。 * *** ***** ******* ***** *** * 题目分析&#xff1a; 先打印前4行&#xff0c;因为是递增关系。 第0行&#xff1a;打印3个空格&#xff0c;1个* 第1行&#xff1a;打印2个空格&#xff0c;3个*…

vue day06

1、路由模块封装 2、声明式导航 实现导航高亮效果 直接通过这两个类名对相应标签设置样式 点击a链接进入my页面时&#xff0c;a链接 我的音乐高亮&#xff0c;同时my下的a、b页面中的 我的音乐也有router-link-active类&#xff0c;但没有精确匹配的类&#xff08;只有my页…

C++PythonC# 三语言OpenCV从零开发(8):图像平滑处理

文章目录 相关链接前言图像资源图像平滑处理图像学知识补充(重点)什么是卷积什么是图像滤波什么是方框滤波和均值滤波 代码PythonCCsharp 总结 相关链接 C&Python&Csharp in OpenCV 专栏 【2022B站最好的OpenCV课程推荐】OpenCV从入门到实战 全套课程&#xff08;附带课…

奇安信网神 SecGate3600-authManageSet.cgi登录绕过漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

《Python 网络爬虫简易速速上手小册》第8章:分布式爬虫设计(2024 最新版)

文章目录 8.1 分布式爬虫的架构8.1.1 重点基础知识讲解8.1.2 重点案例&#xff1a;使用 Scrapy 和 Scrapy-Redis 构建分布式爬虫8.1.3 拓展案例 1&#xff1a;使用 Kafka 作为消息队列8.1.4 拓展案例 2&#xff1a;利用 Docker 容器化工作节点 8.2 分布式任务管理8.2.1 重点基础…

硬件工程师成长之路(0)----认识元件

系列文章目录 1.元件基础 2.电路设计 3.PCB设计 4.元件焊接 5.板子调试 6.程序设计 7.算法学习 8.编写exe 9.检测标准 10.项目举例 11.职业规划 文章目录 前言1、电阻①、贴片电阻②、金属膜电阻③、水泥电阻④、制动电阻⑤、电位器⑥、压敏电阻⑦、热敏电阻⑧、光敏电阻⑨…