使用python-numpy实现一个简单神经网络

目录

前言

导入numpy并初始化数据和激活函数

初始化学习率和模型参数 

迭代更新模型参数(权重)

小彩蛋


前言

这篇文章,小编带大家使用python-numpy实现一个简单的三层神经网络,不使用pytorch等深度学习框架,来理解一下神经网络的原理和观察一下它内部的一些操作如反向传播,权重更新是如何实现的。

导入numpy并初始化数据和激活函数

# 三层神经网络
import numpy as npdef sigmoid(x, back=False):  # 激活函数if back:return x * (1 - x)  # 反向传播(求了个导)return 1 / (1 + np.exp(-x))  # 前向传播x = np.array([[0, 0, 1],[0, 1, 1],[1, 0, 1],[1, 1, 1],[0, 0, 1]]
)
print(x.shape)  # 构造出来五个样本,每个样本有三列特征
y = np.array([[0],[1],[1],[0],[0]]
)
print(y.shape)  # 构造目标值,有监督学习

在这里我们先定义了一个激活函数,这里用sigmoid激活函数,激活函数用于加在每层网络的后面,使得神经网络可以进行非线性变换。

我们同时又用numpy创建了一个输入x和标签(输出)y,x为五个样本,每个样本有三个特征值,y是x对应五个样本的输出,在这里我们进行一个二分类,所以y中的值只有0或者1。

初始化学习率和模型参数 

np.random.seed(1)  # 指定随机种子,使得每次程序的随机数都一样
lr = 0.1 # 初始化学习率
w0 = 2 * np.random.random(size=(3, 4)) - 1  # 随机生成变换矩阵
w1 = 2 * np.random.random(size=(4, 1)) - 1  # 和w0相呼应,1是输出的意思,这里不是输出1就是输出0

在这里我们初始化学习率为0.1,这个数值是控制模型参数每次更新步长的超参数,学习率过大会使得模型震荡,学习率过小会使得模型收敛速度较慢。

w0和w1为模型参数,也是模型要学习的数值,通过不断迭代以最小化损失函数为目的会使得这两个数值不断更新。(使用深度学习框架编写神经网络时,权重的初始化会由框架实现,其是随机初始化)

此时我们的网络就是这个样子的

迭代更新模型参数(权重)

模型参数的更新主要有这几个过程:

1,通过x和随机的模型参数进行前向传播,得到预测的y。

2,通过预测得到的y和真实的y进行计算,获得损失函数。

3,通过损失函数反向传播,利用链式法则获得梯度,从而根据学习率和梯度去更新模型参数。

这几步为神经网络的核心,其旨在不断迭代,从而使得我们可以获得一组模型参数,通过这组模型参数,我们就可以使得输入x后得到的结果最大程度的接近真实的y值。

for j in range(60000):  # 神经网络计算# 前向传播l0 = x  # 定义神经网络第一层(输入层),直接等于xl1 = sigmoid(np.dot(l0, w0))  # 矩阵相乘(注意顺序),别忘了乘激活函数l2 = sigmoid(np.dot(l1, w1))l2_error = (l2 - y) ** 2 / 2  # 误差项(均方误差损失函数)# 反向传播l2_delta = (l2 - y) * sigmoid(l2, back=True)l1_error = np.dot(l2_delta, w1.T)l1_delta = l1_error * sigmoid(l1, back=True)# 更新权重w1 -= lr * np.dot(l1.T, l2_delta)w0 -= lr * np.dot(l0.T, l1_delta)# 验证误差if j % 10000 == 0:print('ERROR: '+str(np.mean(l2_error)))

这里附上运行结果和链式法则的图片

 其中,a为经过sigmoid激活函数得到的结果,图片中的w2为代码里的w0

小彩蛋

最后附上一个类比来更加形象的理解神经网络的运作原理与步骤。

我们可以将神经网络类比为去商场买衣服,那么为什么可以这么理解呢,小编在这里给出解释,括号里为对应的神经网络中的操作。

假设你去商场买衣服,那么你肯定想要一件合身且好看的衣服(在这里你为输入x,你的满意程度为输出y,而衣服就是中间的模型参数),那么你刚进商城,你肯定不知道那件衣服适合你,此时你就会根据初步的印象来选择一件衣服去试一下(初始化模型参数),你试过之后,你就会获得一个满意程度(获得损失函数),此时你也知道你试的这件是大了还是小了,你知道下一件试衣服是该试大的还是小的(根据损失函数反向传播),然后你会根据这个信息去试下一件(更新模型参数),而在这里比方说你试的衣服大了,那么你下一件肯定会去拿稍微小的衣服,但是具体小多少呢,这个在日常生活中应该会估计一下(在神经网络中,具体小多少这件事情就是学习率做的事),最后通过不断的试穿衣服,我们会找到最合适的那身最后买下(不断迭代使得损失函数最小化)。

那么还有一个疑问,损失函数去哪里了呢,损失函数可以理解为你换衣服的过程,比如这件你感觉很合适,但是试来试去你发现并不合你的身,那么此时你会去试其他不同的衣服(这在神经网络中就是损失函数的作用)。

视频讲解请查看:https://www.bilibili.com/video/BV1pK421C7xr/?spm_id_from=333.999.0.0&vd_source=ea64b940c4e46744da2aa737dca8e183

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/677189.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TELNET 远程终端协议

远程终端协议 TELNET TELNET 是一个简单的远程终端协议,也是互联网的正式标准。 用户用 TELNET 就可在其所在地通过 TCP 连接注册(即登录)到远地的另一个主机上(使用主机名或 IP 地址)。 TELNET 能将用户的击键传到…

使用cocos2d-console初始化一个项目

先下载好cocos2d-x的源码包 地址 https://www.cocos.com/cocos2dx-download 这里使用的版本是 自己的电脑要先装好python27 用python安装cocos2d-console 看到项目中有个setup.py的一个文件 python setup.py 用上面的命令执行一下。 如果执行正常的话回出现上面的图 然后…

每日五道java面试题之java基础篇(二)

第一题. 为什么说 Java 语⾔“编译与解释并存”? ⾼级编程语⾔按照程序的执⾏⽅式分为编译型和解释型两种。 简单来说,编译型语⾔是指编译器针对特定的操作系统将源代码⼀次性翻译成可被该平台执⾏的机器码;解释型语⾔是指解释器对源程序逐…

前端JavaScript篇之call() 和 apply() 的区别?

目录 call() 和 apply() 的区别? call() 和 apply() 的区别? 在JavaScript中,call()和apply()都是用来改变函数中this指向的方法,它们的作用是一样的,只是传参的方式不同。 call()方法和apply()方法的第一个参数都是…

4核8g服务器能支持多少人访问?2024新版测评

腾讯云轻量4核8G12M轻量应用服务器支持多少人同时在线?通用型-4核8G-180G-2000G,2000GB月流量,系统盘为180GB SSD盘,12M公网带宽,下载速度峰值为1536KB/s,即1.5M/秒,假设网站内页平均大小为60KB…

js-添加网页快捷方式

title: js-添加网页快捷方式 categories: Javascript tags: [p快捷方式] date: 2024-02-04 15:28:25 comments: false mathjax: true toc: true js-添加网页快捷方式 前篇 谷歌上包困难的情况, 只能通过投放落地页来缓解一下痛苦, web2app 那种形式有几个比较大的缺点就是需要…

MongoDB部署策略

内 容 简 介 本文介绍了MongoDB数据库的优点的数据存储模式的安装部署过程。 利用MongoDB在存储海量数据上的优势,部署存储空间大数据。 欢迎批评指正补充 由于编者水平有限,所搜集资料也很有限,制定的规范肯定有考虑不周全、甚至完全错误…

速过计算机二级python——第9讲 详解第 2 套真题

第9讲 详解第 2 套真题 基本编程题【15 分】简单应用题【25 分】综合应用题【20 分】**问题 1**【10 分】:**问题 2【10 分】:**基本编程题【15 分】 考生文件夹下存在一个文件 PY101.py,请写代码替换横线,不修改其他代码,实现以下功能:【5 分】题目: import __________ b…

指针的学习3

目录 字符指针变量 数组指针变量 二维数组传参的本质 函数指针变量 函数指针变量的创建 函数指针变量的使用 两段有趣的代码 typedef关键字 函数指针数组 转移表 回调函数: 字符指针变量 int main() {char arr[10] "abcdef";char* p1 arr;//…

【JAVA WEB】盒模型

目录 边框 内边距 基础写法 复合写法 外边距 基础写法 复合写法 块级元素的水平居中 弹性布局 设置行内元素的属性 ,span 每一个HTML元素就相当于是一个矩形的“盒子” 这个盒子由以下这几个部分构成: 1.边框 border 2.内容 content 3.内边…

ChatGLM2-6B模型的win10测试笔记

ChatGLM2-6B介绍: 介绍 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性: 更强大的性能:基于 ChatGLM 初…

编程实例分享,宠物诊所电子处方怎么开,兽医电子处方模板电子版操作教程

编程实例分享,宠物诊所电子处方怎么开,兽医电子处方模板电子版操作教程 一、前言 以下操作教程以 佳易王兽医电子处方软件V16.0为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 1、在系统 设置里可以设置打印参数&#x…

【Java】eclipse连接MySQL数据库使用笔记(自用)

注意事项 相关教程:java连接MySQL数据库_哔哩哔哩_bilibilijava连接MySQL数据库, 视频播放量 104662、弹幕量 115、点赞数 1259、投硬币枚数 515、收藏人数 2012、转发人数 886, 视频作者 景苒酱, 作者简介 有时任由其飞翔,有时禁锢其翅膀。粉丝群1&…

为什么IDM下载速度很慢,IDM下载速度很慢怎么办

为什么IDM下载速度很慢,IDM下载速度很慢怎么办 IDM采用的是多线程下载模式。 如果说单线程下载“一个人完成一项工作”,那多线程下载就是“多个人完成一项工作”。它能让用户从服务器获得更高的带宽,从而提高资源下载速度。一般IDM会默认使用…

Transformer的PyTorch实现之若干问题探讨(二)

在《Transformer的PyTorch实现之若干问题探讨(一)》中探讨了Transformer的训练整体流程,本文进一步探讨Transformer训练过程中teacher forcing的实现原理。 1.Transformer中decoder的流程 在论文《Attention is all you need》中&#xff0…

【OrangePi Zero2 智能家居】需求及项目准备

一、需求及项目准备 二、系统框图 三、硬件接线 四、语音模块配置 五、模块测试 一、需求及项目准备 语音接入控制各类家电,如客厅灯、卧室灯、风扇Socket网络编程,实现Sockect发送指令远程控制各类家电烟雾警报监测, 实时检查是否存在煤气…

高级FPGA开发之基础协议PCIe(二)

高级FPGA开发之基础协议之PCIe(二) 一、TLP报文类型 在PCIe总线中,存储器读写、I/O读写和配置读写请求TLP主要由以下几类报文组成: 1.1 存储器读请求TLP和读完成TLP 当PCIe主设备(RC或者EP)访问目标设备…

Java图形化界面编程——菜单组件 笔记

2.7 菜单组件 ​ 前面讲解了如果构建GUI界面,其实就是把一些GUI的组件,按照一定的布局放入到容器中展示就可以了。在实际开发中,除了主界面,还有一类比较重要的内容就是菜单相关组件,可以通过菜单相关组件很方便的使用…

机器学习系列——(十二)线性回归

导言 在机器学习领域,线性回归是最基础且重要的算法之一。它用于建立输入特征与输出目标之间的线性关系模型,为我们解决回归问题提供了有效的工具。本文将详细介绍线性回归的原理、应用和实现方法,帮助读者快速了解和上手这一强大的机器学习…

回调地狱 与 Promise(JavaScript)

目录捏 前言一、异步编程二、回调函数三、回调地狱四、Promise1. Promise 简介2. Promise 语法3. Promise 链式 五、总结 前言 想要学习Promise,我们首先要了解异步编程、回调函数、回调地狱三方面知识: 一、异步编程 异步编程技术使你的程序可以在执行一…