【第二十三课】最小生成树:prime 和 kruskal 算法(acwing858,859 / c++代码 )

目录

前言

Prime算法--加点法

acwing-858 

代码如下

一些解释 

Kruskal算法--加边法

acwing-859

并查集与克鲁斯卡尔求最小生成树 

代码如下

一些解释  


前言

之前学最短路的时候,我们都是以有向图为基础的,当时我们提到如果是无向图,只要记得两个顶点处都要加边就好了。

而在最小生成树的问题中,我们所面临的大多都是无向图。

这个姐姐👇对这两种算法的讲解非常清晰,没有代码部分,但是对于理解这两种算法的做法很有帮助,推荐看一下。 

【数据结构 图 最小生成树 Prime和Kruskal算法】

截取自视频。

感觉总结的很好,就搬过来啦(侵删) 

Prime算法--加点法

prime算法也叫加点法,主要是通过不断将所有顶点都加入到生成树中实现的。

利用该算法求最小生成树的步骤就是:

从任意1个顶点开始,在其他所有顶点中,选出一个离它距离最近的顶点,将其与该顶点进行连线;之后我们看其他的顶点中   离这两个已经选中的点  之间的距离最短的点,再将其连线......

由此我们可以总结出,我们要看的是:其他顶点中 到已经选出的这些顶点的集合 距离最短的点,我们把这个集合称为生成树,这里可以理解哈。

因此我们可以判断dist数组的含义应该是:存储每一个顶点到 集合(也就是生成树) 的最短距离。

prime算法的代码和dijkstra算法的实现是差不多的,主要区别就是dist数组的含义。前者是找离这个集合最短距离的点,后者找的是离某个源点距离最短的点

下面这个图模拟我们prime算法的手算的步骤

方便大家理解啦~ 

prime算法时间复杂度是O(n^2),适用于解决稠密图的问题。 

下面是模板题:

acwing-858 

可以看出数据范围边数远大于点数,属于稠密图。

与dijkstra算法的思路是差不多的,直接看代码把 

代码如下

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=510, INF=0x3f3f3f3f;
int n,m;
int g[N][N];
int dist[N];//存储每一个顶点到 集合(也就是生成树) 的最短距离
bool st[N];
int prime()
{memset(dist,0x3f,sizeof dist);int ans=0;for(int i=0;i<n;i++)//要加入所有的顶点,因此要循环n次{int t=-1;for(int j=1;j<=n;j++){if(!st[j] && (t==-1 || dist[t]>dist[j])){t=j;}}if(i && dist[t]==INF)return INF;if(i)ans+=dist[t];//第一个顶点权值是0,没必要再加一次,因此存在该if语句//选中t之后,比较原来的各个顶点到生成树的距离 与 各顶点与t顶点的权值的大小关系for(int j=1;j<=n;j++){dist[j]=min(dist[j],g[t][j]);}st[t]=1;}return ans;
}
int main()
{cin>>n>>m;memset(g,0x3f,sizeof g);for(int i=0;i<m;i++){int a,b,c;cin>>a>>b>>c;g[a][b]=g[b][a]=min(g[a][b],c);}int t=prime();if(t==INF)puts("impossible");else cout<<t<<endl;return 0;
}

一些解释 

1.if(i && dist[t]==INF)return INF; 

这里我们判断除了第一个顶点之外的其他顶点,到生成树的距离是否是无穷大,如果是无穷大说明图不连通,无法构成生成树

由于我们外层循环只控制循环次数,表示要加入n个顶点,且i从0开始,说明了第一个顶点是作为第0次循环实现的,因此这里排除第一个顶点,直接判断 i 就可以

为什么要跳过第一个顶点?

如果我们不跳过第一个顶点,那么在第一次循环时,由于所有顶点到生成树的距离都被初始化为无穷大,所以会直接返回无穷大,这显然是不正确的。因此,我们需要在第一次循环时跳过这个检查。

2.dist[j]=min(dist[j],g[t][j]); 

这里遍历各个顶点,判断 其原始的dist[j]与添加了 t 顶点之后,t与j顶点之间的权值 的大小关系,从而更新出每个顶点到生成树的距离。(因为既然t已经被加入到生成树中,那么到t的权值也就是到生成树的距离啦。)

把prime与dijkstra的代码放在一起对比一下

Kruskal算法--加边法

kruskal算法与prime对应是加边法,主要通过不断加边,连接到所有顶点之后就得到了最小生成树。

利用这种方法求最小生成树的步骤是:

在所有的边中不断的找最小的边加入到我们最小生成树的集合中,直到将所有顶点都连入。在加边过程中,避免成环即可。

曾经学数据结构的时候,手算我还是比较喜欢用克鲁斯卡尔算法的哈哈哈,感觉加边理解上好像更简单一点。

acwing-859

并查集与克鲁斯卡尔求最小生成树 

我们记得在并查集算法中,进行两个集合的合并和查找操作,就是利用树型结构实现的,在克鲁斯卡尔算法求最小生成树时,我们最终就是将顶点都连在一起算是得到了最小生成树,因此我们可以想着利用并查集的思想来实现克鲁斯卡尔求最小生成树。

嗯,,可以想一下二者的联系。我通过这样可以理解二者的关联。

下面是gpt的解释,更全面和专业一点hh,可以看看帮助理解一下~

应该是可以理解啦。 

需要的话可以回顾一下并查集的知识,之前写过哒

【第十四课】并查集(acwing-837连通块中点的数量 / c++代码 / 思路详解) 

代码如下

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+10;
int n,m;
int p[N];
struct Edge{int a,b,w;//运算符重载函数bool operator< (const Edge &W)const{return w<W.w;}
}edges[N];
int find(int x)
{if(p[x]!=x)p[x]=find(p[x]);return p[x];
}
int main()
{cin>>n>>m;for(int i=0;i<m;i++){int a,b,w;cin>>a>>b>>w;edges[i]={a,b,w};}sort(edges,edges+m);//每个顶点都单独处在一个集合里for(int i=1;i<=n;i++)p[i]=i;int res=0,count=0;//res累加权值 count存储加入的边数for(int i=0;i<=m;i++)//遍历排好序的边的信息{int a=edges[i].a,b=edges[i].b,w=edges[i].w;a=find(a),b=find(b);//如果该边的两个顶点不连通 说明不会形成环if(a!=b){p[a]=b;res+=w;count++;}}if(count<n-1)puts("impossible");//如果边数并不符合 说明不存在最小生成树else cout<<res;return 0;
}

一些解释  

sort(edges,edges+m);

这里我们调用sort函数,直接写的edge结构体-edge+m,就是因为在结构体中我们定义了重载

//运算符重载函数bool operator< (const Edge &W)const{return w<W.w;}

因为结构体中含有多个变量,如果不定义运算符重载,那么在使用 sort 函数等需要比较边的权值大小的地方,编译器将无法确定如何比较两个 Edge 对象 。

关于重载的一些知识,,,


今年就先写到这里啦。大家除夕快乐啦~

有问题欢迎指出,一起加油!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/676501.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深度学习】实验7布置,图像超分辨

清华大学驭风计划 因为篇幅原因实验答案分开上传&#xff0c; 实验答案链接http://t.csdnimg.cn/P1yJF 如果需要更详细的实验报告或者代码可以私聊博主 有任何疑问或者问题&#xff0c;也欢迎私信博主&#xff0c;大家可以相互讨论交流哟~~ 深度学习训练营 案例 7 &#xff1…

计算机毕业设计Python+django医院后勤服务系统flask

结合目前流行的 B/S架构&#xff0c;将医疗后勤服务管理的各个方面都集中到数据库中&#xff0c;以便于用户的需要。该平台在确保平台稳定的前提下&#xff0c;能够实现多功能模块的设计和应用。该平台由管理员功能模块,工作人员模块&#xff0c;患者模块&#xff0c;患者家属模…

基于SpringBoot的记账系统项目

点击以下链接获取源码&#xff1a;https://download.csdn.net/download/qq_64505944/88822660?spm1001.2014.3001.5503 Java项目-8 开发工具&#xff1a;IDEA/Eclipse,MySQL,Tomcat 项目框架&#xff1a;SpringBoot,layui 功能&#xff1a;可以按照类型和时间查询&#xff0c…

基于tomcat运行jenkins常见的报错处理

目录 1.jenkins.util.SystemProperties$Listener错误 升级jdk11可能遇到的坑 2.java.lang.RuntimeException: Fontconfig head is null, check your fonts or fonts configuration 3.There were errors checking the update sites: UnknownHostException:updates.jenkins.i…

notepad++成功安装后默认显示英文怎么设置中文界面?

前几天使用电脑华为管家清理电脑后&#xff0c;发现一直使用的notepad软件变回了英文界面&#xff0c;跟刚成功安装的时候一样&#xff0c;那么应该怎么设置为中文界面呢&#xff1f;具体操作如下&#xff1a; 1、打开notepad软件&#xff0c;点击菜单栏“Settings – Prefere…

Modern C++ 内存篇1 - std::allocator VS pmr

大年三十所写&#xff0c;看到就点个赞吧&#xff01;祝读者们龙年大吉&#xff01;当然有问题欢迎评论指正。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. 前言 从今天起我们开始内存相关的话题&#xff0c;内存是个很大的话题&#xff0c;一时不…

探索未来:集成存储器计算(IMC)与深度神经网络(DNN)的机遇与挑战

开篇部分&#xff1a;人工智能、深度神经网络与内存计算的交汇 在当今数字化时代&#xff0c;人工智能&#xff08;AI&#xff09;已经成为科技领域的一股强大力量&#xff0c;而深度神经网络&#xff08;DNN&#xff09;则是AI的核心引擎之一。DNN是一种模仿人类神经系统运作…

sqli.bypass靶场本地小皮环境(1-5关)

1、第一关 http://sqli.bypass/index1.php 单引号报错id1 双引号正常id1&#xff0c;应该是单引号闭合 id1--注释符用不了&#xff0c;%20和都用不了 %0a可以用 没有报错&#xff0c;用布尔盲注&#xff0c;POC&#xff1a;id1%0aand%0asubstr(ss,1,1)s%0aand%0a11 脚本跑数…

大模型学习笔记二:prompt工程

文章目录 一、经典AI女友Prompt二、prompt怎么做&#xff1f;1&#xff09;注重格式&#xff1a;2&#xff09;prompt经典构成3&#xff09;简单prompt的python询问代码4&#xff09;python实现订阅手机流量套餐的NLU5&#xff09;优化一&#xff1a;加入垂直领域推荐6&#xf…

GPT-4模型中的token和Tokenization概念介绍

Token从字面意思上看是游戏代币&#xff0c;用在深度学习中的自然语言处理领域中时&#xff0c;代表着输入文字序列的“代币化”。那么海量语料中的文字序列&#xff0c;就可以转化为海量的代币&#xff0c;用来训练我们的模型。这样我们就能够理解“用于GPT-4训练的token数量大…

从一到无穷大 #23 《流计算系统图解》书评

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。 本作品 (李兆龙 博文, 由 李兆龙 创作)&#xff0c;由 李兆龙 确认&#xff0c;转载请注明版权。 文章目录 引言内容总结 引言 春节假期回到家里断然是不会有看纸质书的时间的。造化弄人&#…

HCIA--ACL和远程登陆实验

1.划分网段&#xff0c;配IP地址&#xff0c;启用OSPF协议&#xff1a; AR1配置&#xff1a; [Huawei]sys R1 [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ip add 192.168.1.1 24 [R1-GigabitEthernet0/0/0]int g0/0/1 [R1-GigabitEthernet0/0/1]ip add 12.1.1.1 24 [R1-Gigabi…

STM32的ADC电压采集

时间记录&#xff1a;2024/2/9 一、ADC相关知识点 &#xff08;1&#xff09;STM32的ADC时钟不要超过14MHz&#xff0c;不然结果的准确率将下降 &#xff08;2&#xff09;ADC分为规则组和注入组&#xff0c;规则组相当于正常运行的程序&#xff0c;注入组相当于中断可以打断…

贵金属交易包括哪些?香港有哪些贵金属交易平台?

随着金融市场的不断发展&#xff0c;贵金属交易作为一种投资方式&#xff0c;越来越受到投资者的关注。贵金属交易不仅具有投资价值&#xff0c;还能够为投资者提供规避风险和保值的工具。本文将介绍贵金属交易的种类和香港的贵金属交易平台。 一、贵金属交易的种类 贵金属交…

算法——数论——GCD和LCM

目录 GCD&#xff08;最大公约数&#xff09; 1、欧几里得算法 LCM&#xff08;最小公倍数&#xff09; 一、试题 算法训练 抗击虫群 GCD&#xff08;最大公约数&#xff09; 整数 a 和 b 的最大公约数是指能同时整除 a 和 b 的最大整数&#xff0c;记为 gcd(a,b)-a的因子和…

为什么在产品设计和制造过程中要采用FMEA——SunFMEA软件

在产品设计和制造过程中&#xff0c;FMEA是一种非常重要的工具&#xff0c;用于评估潜在的故障模式及其对产品性能的影响。通过分析产品设计或流程中可能出现的故障模式&#xff0c;并评估其对产品性能和客户满意度的潜在影响&#xff0c;来预测和防止产品在生产和运行过程中出…

火星符号运算 - 华为OD统一考试

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 100分 题解&#xff1a; Java / Python / C 题目描述 已知火星人使用的运算符号为 #和$ 其与地球人的等价公式如下 x#y2*x3*y4 x$y3*xy2x y是无符号整数。地球人公式按照c语言规则进行计算。火星人公式中&#xff0…

心情切换器(仅供娱乐)

本次分享主要内容较为新奇&#xff0c;作用程度可以说没用&#xff0c;仅供娱乐(注&#xff1a;本次成果使用的为vue框架实现) 一、静态及呈现图 <div class"switchMood"><h2>心情转换器</h2><!--输入当前心情表单--><div class"fr…

LM403-Pro-Kit数据手册

如上图所示&#xff0c;LM403-Pro-Kit评估板由ST-LINK、跳线、LM403模组、按键、LED以及天线接口等组成。 USB连接PC即可以在线仿真、下载和串口打印调试输出、输入操作。 电源开关 控制LM403模组的电源与LDO的3.3V的通断。 MicroUSB 板子供电及ST-LINK与PC机连接的接口。 S…

Java多线程:线程安全

&#x1f451;专栏内容&#xff1a;Java⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、线程状态1、New&#xff08;初始状态&#xff09;2、Terminated&#xff08;终止状态&#xff09;3、Runnable&#xff08;…