Modern C++ 内存篇1 - std::allocator VS pmr

大年三十所写,看到就点个赞吧!祝读者们龙年大吉!当然有问题欢迎评论指正。
在这里插入图片描述

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. 前言

从今天起我们开始内存相关的话题,内存是个很大的话题,一时不知从何说起。内存离不开allocator,我们就从allocator开始吧。allocator目前有两种:std::allocator, std::pmr::polymorphic_allocator,各有优缺点。
上来就长篇大论容易显得枯燥,我们还是抛出一个例子然后提出问题,通过问题慢慢深入吧。

2. 分配器例子

下面这个例子是我很久以前从一个网站上copy下来的。是个不错的用来快速学习的例子。作者当时留了个疑问没解决:为什么预分配内存的pmr反而效率更低哪?
这也是本节我们要解决的问题,从中也可以学到allocator和polymorphic_allocator的优缺点对比。

#include<iostream>
#include<memory_resource>
#include<vector>
#include "../PerfSum.hpp"
using namespace std;void TestPmrVec(){char buffer[1000000*4] = {0};std::pmr::monotonic_buffer_resource mbr{ std::data(buffer), std::size(buffer) };std::pmr::polymorphic_allocator<int> pa{&mbr};std::pmr::vector<int> vec{pa};//vec.push_back(0);//vec.push_back(1);PerfSum t;for(int i=0;i<1000000;i++){vec.push_back(i);}std::cout<<"End"<<std::endl;}void TestStdVec(){std::vector<int> vec ;PerfSum t;//vec.push_back(0);//vec.push_back(1);for(int i=0;i<1000000;i++){vec.push_back(i);}std::cout<<"End"<<std::endl;}int main() {std::cout<<"std vector cost:"<<std::endl;TestStdVec();std::cout<<"pmr vector cost:"<<std::endl;TestPmrVec();
}

其中PerfSum.hpp在《Modern C++ idiom3:RAII》中有提到。编译运行结果:

[mzhai@std_polymorphic_pmr]$ g++ compare_speed.cpp -std=c++17 -g
[mzhai@std_polymorphic_pmr]$ ./a.out
std vector cost:
Endtook 19171 microseconds.
pmr vector cost:
Endtook 56134 microseconds.

可见pmr反而比普通的vector慢了大约3倍。
这里我还是坚持我一贯的写作风格:先preview结果给大家,尽量一句话说明白,没时间的读者可以节约时间去干点别的,有时间且有兴趣了解细节的读者可以慢慢往下看。
preview:虽然pmr预分配的内存空间,但是后面vector既有capacity不够时需要copy/move旧的数据到新分配的空间去,pmr::vector是一个个元素move过去的;而普通vector是调用memmove把所有数据一股脑move过去的。

注意:pmr是c++17开始才有的standard library features, gcc从9.1开始支持。

3. pmr慢的原因

启动perf, 查热点:

[mzhai@std_polymorphic_pmr]$ sudo sysctl -w kernel.kptr_restrict=0
sudo sysctl -w kernel.perf_event_paranoid=0
[sudo] password for mzhai:
kernel.kptr_restrict = 0
kernel.perf_event_paranoid = 0
[mzhai@std_polymorphic_pmr]$ perf record -a -g ./a.out
std vector cost:
Endtook 17302 microseconds.
pmr vector cost:
Endtook 58350 microseconds.
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.100 MB perf.data (369 samples) ]
[mzhai@std_polymorphic_pmr]$ perf report

在这里插入图片描述
找到__uninitialized_copy_a的实现,我的机器在目录/usr/include/c++/11/bits/stl_uninitialized.h中:

请添加图片描述
从perf report能隐约看出调用栈,__uninitialized_copy_a是从push_back -> _M_realloc_insert 调过来的,从名字猜也能猜到是vector旧的分配的空间不够了需要reallocate, 分配完新的空间后需要调用__uninitialized_copy_a把旧的数据copy或move过来,但是重点是:这里竟然是for循环,是一个个copy或move过来的!

4. std::allocator快的原因

作为对比,我们查下std::vector 空间不够是怎么做的?
读者可自行调试TestStdVec,我这里直接上代码:

#0  std::__relocate_a_1<int, int> (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc) at /usr/include/c++/11/bits/stl_uninitialized.h:1012
#1  0x000000000040451f in std::__relocate_a<int*, int*, std::allocator<int> > (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc, __alloc=...)at /usr/include/c++/11/bits/stl_uninitialized.h:1046
#2  0x000000000040423f in std::vector<int, std::allocator<int> >::_S_do_relocate (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc, __alloc=...)at /usr/include/c++/11/bits/stl_vector.h:456
#3  0x0000000000403e5d in std::vector<int, std::allocator<int> >::_S_relocate (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc, __alloc=...)at /usr/include/c++/11/bits/stl_vector.h:469
#4  0x000000000040376a in std::vector<int, std::allocator<int> >::_M_realloc_insert<int const&> (this=0x7fffffffdb70, __position=0)at /usr/include/c++/11/bits/vector.tcc:468
#5  0x0000000000402f24 in std::vector<int, std::allocator<int> >::push_back (this=0x7fffffffdb70, __x=@0x7fffffffdb3c: 2)

请添加图片描述
直接调用__builtin_memmove把旧数据一股脑memmove过去,能不快吗?!
可能有读者有一点点疑问:想__builtin_memmove真的调用memmove吗?简单看下汇编就知道啦。请添加图片描述

5. 何时调用memmove何时调用for循环

通过上面的分析,我们现在知道了pmr慢而普通allocator快的原因了,接着新的问题来了:为什么pmr不走memmove? 什么条件下走memmove哪?
在这里插入图片描述

/usr/include/c++/11/bits/vector.tcc
423   template<typename _Tp, typename _Alloc>424     template<typename... _Args>425       void426       vector<_Tp, _Alloc>::427       _M_realloc_insert(iterator __position, _Args&&... __args)434     {458 #if __cplusplus >= 201103L459       if _GLIBCXX17_CONSTEXPR (_S_use_relocate())460         {461           __new_finish = _S_relocate(__old_start, __position.base(),462                      __new_start, _M_get_Tp_allocator());463464           ++__new_finish;465466           __new_finish = _S_relocate(__position.base(), __old_finish,467                      __new_finish, _M_get_Tp_allocator());468         }469       else470 #endif471         {472           __new_finish473         = std::__uninitialized_move_if_noexcept_a474         (__old_start, __position.base(),475          __new_start, _M_get_Tp_allocator());476477           ++__new_finish;478479           __new_finish480         = std::__uninitialized_move_if_noexcept_a481         (__position.base(), __old_finish,482          __new_finish, _M_get_Tp_allocator());483         }

关键点在_S_use_relocate()的值,此函数的定义如下:

/usr/include/c++/11/bits/stl_vector.h430       static constexpr bool431       _S_nothrow_relocate(true_type)432       {433     return noexcept(std::__relocate_a(std::declval<pointer>(),434                       std::declval<pointer>(),435                       std::declval<pointer>(),436                       std::declval<_Tp_alloc_type&>()));437       }438439       static constexpr bool440       _S_nothrow_relocate(false_type)441       { return false; }442443       static constexpr bool444       _S_use_relocate()445       {446     // Instantiating std::__relocate_a might cause an error outside the447     // immediate context (in __relocate_object_a's noexcept-specifier),448     // so only do it if we know the type can be move-inserted into *this.449     return _S_nothrow_relocate(__is_move_insertable<_Tp_alloc_type>{});450       }
  1. 首先看__is_move_insertable<_Tp_alloc_type>{},无论_Tp_alloc_type是std::allocator 还是std::pmr::polymorphic_allocator,结果是true.
785   template<typename _Alloc>
786     struct __is_move_insertable
787     : __is_alloc_insertable_impl<_Alloc, typename _Alloc::value_type>::type
788     { };
789
790   // std::allocator<_Tp> just requires MoveConstructible
791   template<typename _Tp>
792     struct __is_move_insertable<allocator<_Tp>>
793     : is_move_constructible<_Tp>
794     { };

std::allocator匹配后者(791行),is_move_constructible为true;
pmr匹配前者(785行), 匹配下面的两者之一。
此处用了SFINAE思想,如果_Alloc能用_Tp做参数类型构造一个_ValueT*对象,则匹配true的这个模板,否则false, 分别对应__is_move_insertable的结果此处用了SFINAE思想,如果_Alloc能用_Tp做参数类型构造一个_ValueT*对象,则匹配true的这个模板,否则false, 分别对应__is_move_insertable的结果。std::allocator及polymorphic_allocator都有construct函数,构造int对象没问题。
2. 看std::__relocate_a是否抛出异常,__relocate_a会看__relocate_a_1是否抛出异常,而__relocate_a_1会看__relocate_object_a是否抛出异常,__relocate_object_a是否抛出异常取决于:

984   template<typename _Tp, typename _Up, typename _Allocator>985     inline void986     __relocate_object_a(_Tp* __restrict __dest, _Up* __restrict __orig,987             _Allocator& __alloc)988     noexcept(noexcept(std::allocator_traits<_Allocator>::construct(__alloc,989              __dest, std::move(*__orig)))990          && noexcept(std::allocator_traits<_Allocator>::destroy(991                 __alloc, std::__addressof(*__orig))))

std::allocator_traits<_Allocator>::construct 取决于 std::is_nothrow_constructible<_Up, _Args…>::value
std::allocator_traits<_Allocator>::destroy 取决于 is_nothrow_destructible<_Up>::value

以上仅当所有情况都是noexcept为true才会走_S_relocate的分支(不走__uninitialized_move_if_noexcept_a)。

不过除此之外__relocate_a_1还有一个特例:

1000   template<typename _Tp, typename = void>
1001     struct __is_bitwise_relocatable
1002     : is_trivial<_Tp> { };
1003
1004   template <typename _Tp, typename _Up>
1005     inline __enable_if_t<std::__is_bitwise_relocatable<_Tp>::value, _Tp*>
1006     __relocate_a_1(_Tp* __first, _Tp* __last,
1007            _Tp* __result, allocator<_Up>&) noexcept
1008     {
1009       ptrdiff_t __count = __last - __first;
1010       if (__count > 0)
1011     __builtin_memmove(__result, __first, __count * sizeof(_Tp));
1012       return __result + __count;
1013     }

如果_Tp(我的例子里是int)是trivial的 且 分配器是std::allocator,则__relocate_a_1是noexcept的,则走_S_relocate的分支(不走__uninitialized_move_if_noexcept_a)

草草的画了一个流程图(大家凑合看):
在这里插入图片描述

上面两条捋了一遍_S_use_relocate()的结果, 但并不是它是true就一定用memmove,

/usr/include/c++/11/bits/stl_vector.h452       static pointer453       _S_do_relocate(pointer __first, pointer __last, pointer __result,454              _Tp_alloc_type& __alloc, true_type) noexcept455       {456     return std::__relocate_a(__first, __last, __result, __alloc);457       }458459       static pointer460       _S_do_relocate(pointer, pointer, pointer __result,461              _Tp_alloc_type&, false_type) noexcept462       { return __result; }463464       static pointer465       _S_relocate(pointer __first, pointer __last, pointer __result,466           _Tp_alloc_type& __alloc) noexcept467       {468     using __do_it = __bool_constant<_S_use_relocate()>;469     return _S_do_relocate(__first, __last, __result, __alloc, __do_it{});470       }

459行永远也走不到,因为_S_use_relocate()位true才会调用到这,而其值为true则一定匹配452行的函数特化版本。
__relocate_a最终调用到__relocate_a_1,上面提到过它有两个版本:
只有_Tp是trivial 且 用std::allocator 才会调用memmove。

1004   template <typename _Tp, typename _Up>
1005     inline __enable_if_t<std::__is_bitwise_relocatable<_Tp>::value, _Tp*>
1006     __relocate_a_1(_Tp* __first, _Tp* __last,
1007            _Tp* __result, allocator<_Up>&) noexcept
1008     {
1009       ptrdiff_t __count = __last - __first;
1010       if (__count > 0)
1011     __builtin_memmove(__result, __first, __count * sizeof(_Tp));
1012       return __result + __count;
1013     }
1014
1015   template <typename _InputIterator, typename _ForwardIterator,
1016         typename _Allocator>
1017     inline _ForwardIterator
1018     __relocate_a_1(_InputIterator __first, _InputIterator __last,
1019            _ForwardIterator __result, _Allocator& __alloc)
1020     noexcept(noexcept(std::__relocate_object_a(std::addressof(*__result),
1021                            std::addressof(*__first),
1022                            __alloc)))
1023     {
1024       typedef typename iterator_traits<_InputIterator>::value_type
1025     _ValueType;
1026       typedef typename iterator_traits<_ForwardIterator>::value_type
1027     _ValueType2;
1028       static_assert(std::is_same<_ValueType, _ValueType2>::value,
1029       "relocation is only possible for values of the same type");
1030       _ForwardIterator __cur = __result;
1031       for (; __first != __last; ++__first, (void)++__cur)

6. 看一个简单的class的例子

上面我用的是int,下面用一个简单的类看看,验证下上面的流程图。
我就不分析了,大家执行代码看结果来理解吧。

#include<iostream>
#include<memory_resource>
#include<vector>
#include "../PerfSum.hpp"
using namespace std;struct MyClass{MyClass(int _i):i(_i) {}int i;
};void TestPmrVec(){char buffer[1000000*4] = {0};std::pmr::monotonic_buffer_resource pool{std::data(buffer), std::size(buffer)};std::pmr::vector<MyClass> vec{&pool};PerfSum t;for(int i=0;i<1000000;i++){vec.push_back(MyClass{i});}std::cout<<"End"<<std::endl;}void TestStdVec(){std::vector<MyClass> vec ;PerfSum t;for(int i=0;i<1000000;i++){vec.push_back(MyClass{i});}std::cout<<"End"<<std::endl;}int main() {std::cout<<"is_move_constructible<MyClass>: "<<std::is_move_constructible_v<MyClass><<std::endl;std::cout<<"is_nothrow_constructible<MyClass>: "<<std::is_nothrow_constructible_v<MyClass,MyClass&&><<std::endl;std::cout<<"is_nothrow_destructible<MyClass>: "<<std::is_nothrow_destructible_v<MyClass><<std::endl;std::cout<<"trivail<MyClass>: "<<std::is_trivial_v<MyClass><<std::endl;std::cout<<"std vector cost:"<<std::endl;TestStdVec();std::cout<<"pmr vector cost:"<<std::endl;TestPmrVec();
}

7. release版本的差距没那么大

我们废了很大的经历才捋明白何时用memmove何时不用,而且debug版本之间的性能差距达3倍之多,确实值得我们调查一番。但令人失望又惊喜的是:release版本的性能差距竟然只有1.1倍左右:

[mzhai@std_polymorphic_pmr]$ g++ compare_speed.cpp -std=c++17 -O
std vector cost:
Endtook 5349 microseconds.
pmr vector cost:
Endtook 6207 microseconds.
[mzhai@std_polymorphic_pmr]$ ./a.out
std vector cost:
Endtook 4822 microseconds.
pmr vector cost:
Endtook 5160 microseconds.

不由得感叹:现在的编译器真厉害!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/676492.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索未来:集成存储器计算(IMC)与深度神经网络(DNN)的机遇与挑战

开篇部分&#xff1a;人工智能、深度神经网络与内存计算的交汇 在当今数字化时代&#xff0c;人工智能&#xff08;AI&#xff09;已经成为科技领域的一股强大力量&#xff0c;而深度神经网络&#xff08;DNN&#xff09;则是AI的核心引擎之一。DNN是一种模仿人类神经系统运作…

sqli.bypass靶场本地小皮环境(1-5关)

1、第一关 http://sqli.bypass/index1.php 单引号报错id1 双引号正常id1&#xff0c;应该是单引号闭合 id1--注释符用不了&#xff0c;%20和都用不了 %0a可以用 没有报错&#xff0c;用布尔盲注&#xff0c;POC&#xff1a;id1%0aand%0asubstr(ss,1,1)s%0aand%0a11 脚本跑数…

跨模态行人重识别都需要学什么

跨模态行人重识别&#xff08;Cross-Modality Person Re-identification, 简称Cross-Modality Re-ID&#xff09;是计算机视觉领域的一项挑战性任务&#xff0c;旨在跨越不同模态之间&#xff08;例如&#xff0c;可见光与红外线图像&#xff09;识别同一行人。该任务涉及图像处…

大模型学习笔记二:prompt工程

文章目录 一、经典AI女友Prompt二、prompt怎么做&#xff1f;1&#xff09;注重格式&#xff1a;2&#xff09;prompt经典构成3&#xff09;简单prompt的python询问代码4&#xff09;python实现订阅手机流量套餐的NLU5&#xff09;优化一&#xff1a;加入垂直领域推荐6&#xf…

Django开发_21_中间键

一、说明 &#xff08;一&#xff09;根据实际测试&#xff0c;中间键的文件名不是固定的&#xff0c;可以自定义&#xff0c;比如&#xff1a;my_middleware.py、middleware.py都不影响实际的运行 &#xff08;二&#xff09;根据实际测试&#xff0c;中间键文件放在根目录下…

GPT-4模型中的token和Tokenization概念介绍

Token从字面意思上看是游戏代币&#xff0c;用在深度学习中的自然语言处理领域中时&#xff0c;代表着输入文字序列的“代币化”。那么海量语料中的文字序列&#xff0c;就可以转化为海量的代币&#xff0c;用来训练我们的模型。这样我们就能够理解“用于GPT-4训练的token数量大…

homework day6

第五章 静态成员与友元 一、填空题 1、一个类的头文件如下所示&#xff0c;num初始化值为5&#xff0c;程序产生对象T&#xff0c;且修改num为10&#xff0c;并使用show()函数输出num的值10。 #include <iostream.h> class Test { private: static int num; publi…

Java 错误 java.util.InputMismatchException

本文将讨论Java编程语言主线程中的 java.util.InputMismatchException。 Java 中的 java.util.InputMismatchException 每当 JVM 收到一种数据作为输入但需要另一种类型的值&#xff08;这表明数据不匹配&#xff09;时&#xff0c;它就会抛出 java.util.InputMismatchExcepti…

从一到无穷大 #23 《流计算系统图解》书评

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。 本作品 (李兆龙 博文, 由 李兆龙 创作)&#xff0c;由 李兆龙 确认&#xff0c;转载请注明版权。 文章目录 引言内容总结 引言 春节假期回到家里断然是不会有看纸质书的时间的。造化弄人&#…

HCIA--ACL和远程登陆实验

1.划分网段&#xff0c;配IP地址&#xff0c;启用OSPF协议&#xff1a; AR1配置&#xff1a; [Huawei]sys R1 [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ip add 192.168.1.1 24 [R1-GigabitEthernet0/0/0]int g0/0/1 [R1-GigabitEthernet0/0/1]ip add 12.1.1.1 24 [R1-Gigabi…

STM32的ADC电压采集

时间记录&#xff1a;2024/2/9 一、ADC相关知识点 &#xff08;1&#xff09;STM32的ADC时钟不要超过14MHz&#xff0c;不然结果的准确率将下降 &#xff08;2&#xff09;ADC分为规则组和注入组&#xff0c;规则组相当于正常运行的程序&#xff0c;注入组相当于中断可以打断…

贵金属交易包括哪些?香港有哪些贵金属交易平台?

随着金融市场的不断发展&#xff0c;贵金属交易作为一种投资方式&#xff0c;越来越受到投资者的关注。贵金属交易不仅具有投资价值&#xff0c;还能够为投资者提供规避风险和保值的工具。本文将介绍贵金属交易的种类和香港的贵金属交易平台。 一、贵金属交易的种类 贵金属交…

2024.2.7-8 寒假训练记录(21)

文章目录 洛谷P3193 [HNOI2008] GT考试ATC abc339E Smooth SubsequenceATC abc339F Product Equality 洛谷P3193 [HNOI2008] GT考试 题目链接 KMPdp矩阵快速幂 还没有理解得很清楚&#xff0c;主要是对KMP理解还不够深刻 #include <bits/stdc.h>using namespace std;…

C++泛型编程:typename和class关键字的区别

在STL中基本上都使用了模板类的声明&#xff0c;即template。在模板类的声明中&#xff0c;有两种方式&#xff1a; template <class T> template <typename T> 这里&#xff0c;class和typename是相同的。 也就是说&#xff0c;在声明模板类型参数的时候&#xf…

算法——数论——GCD和LCM

目录 GCD&#xff08;最大公约数&#xff09; 1、欧几里得算法 LCM&#xff08;最小公倍数&#xff09; 一、试题 算法训练 抗击虫群 GCD&#xff08;最大公约数&#xff09; 整数 a 和 b 的最大公约数是指能同时整除 a 和 b 的最大整数&#xff0c;记为 gcd(a,b)-a的因子和…

为什么在产品设计和制造过程中要采用FMEA——SunFMEA软件

在产品设计和制造过程中&#xff0c;FMEA是一种非常重要的工具&#xff0c;用于评估潜在的故障模式及其对产品性能的影响。通过分析产品设计或流程中可能出现的故障模式&#xff0c;并评估其对产品性能和客户满意度的潜在影响&#xff0c;来预测和防止产品在生产和运行过程中出…

火星符号运算 - 华为OD统一考试

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 100分 题解&#xff1a; Java / Python / C 题目描述 已知火星人使用的运算符号为 #和$ 其与地球人的等价公式如下 x#y2*x3*y4 x$y3*xy2x y是无符号整数。地球人公式按照c语言规则进行计算。火星人公式中&#xff0…

心情切换器(仅供娱乐)

本次分享主要内容较为新奇&#xff0c;作用程度可以说没用&#xff0c;仅供娱乐(注&#xff1a;本次成果使用的为vue框架实现) 一、静态及呈现图 <div class"switchMood"><h2>心情转换器</h2><!--输入当前心情表单--><div class"fr…

LM403-Pro-Kit数据手册

如上图所示&#xff0c;LM403-Pro-Kit评估板由ST-LINK、跳线、LM403模组、按键、LED以及天线接口等组成。 USB连接PC即可以在线仿真、下载和串口打印调试输出、输入操作。 电源开关 控制LM403模组的电源与LDO的3.3V的通断。 MicroUSB 板子供电及ST-LINK与PC机连接的接口。 S…

代码随想录算法——数组

目录 1、二分查找法 2、移除元素 3、有序数组的平方 4、长度最小的子数组 5、螺旋矩阵II 1、二分查找法 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xff0c;写一个函数搜索 nums 中的 target&#xff0c;如果目标值存在…