报错ValueError: Unknown CUDA arch (8.6) or GPU not supported

文章目录

  • 问题描述
  • 解决方案
  • 参考文献

问题描述

报错 ValueError: Unknown CUDA arch (8.6) or GPU not supported

本人显卡为 RTX 3060,CUDA 为 10.2,PyTorch 为 1.5




解决方案

修改 C:\Users\Administrator\Envs\test\Lib\site-packages\torch\utils\cpp_extension.py 的 named_arches 和 supported_arches 尝试解决:

    named_arches = collections.OrderedDict([('Kepler+Tesla', '3.7'),('Kepler', '3.5+PTX'),('Maxwell+Tegra', '5.3'),('Maxwell', '5.0;5.2+PTX'),('Pascal', '6.0;6.1+PTX'),('Volta', '7.0+PTX'),('Turing', '7.5+PTX'),('Ampere', '8.0;8.6+PTX'),('Ada', '8.9+PTX'),('Hopper', '9.0+PTX'),])supported_arches = ['3.5', '3.7', '5.0', '5.2', '5.3', '6.0', '6.1', '6.2','7.0', '7.2', '7.5', '8.0', '8.6', '8.7', '8.9', '9.0']

很有可能不能解决问题,接着编译报错 nvcc fatal : Unsupported gpu architecture 'compute_86'

建议安装该显卡支持的 CUDA 版本。

如 RTX 3060 的 Compute Capability 为 8.6,支持的 CUDA SDK 为 11.x




参考文献

  1. 3080算力添加、ValueError: Unknown CUDA arch (8.6) or GPU not supported 解决RTX30 运行深度学习代码报错
  2. pytorch - ValueError: Unknown CUDA arch (8.6) or GPU not supported
  3. ValueError: Unknown CUDA arch (8.6) or GPU not supported 解决RTX30 运行深度学习代码报错
  4. CUDA - Wikipedia
  5. CUDA GPUs - Compute Capability

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/676279.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【PyQt】08 - 编辑Tab顺序

文章目录 前言一、Tab顺序二、编辑Tab顺序总结 前言 介绍了什么是Tab顺序,以及如何修改Tab顺序。 一、Tab顺序 当你的界面设计好之后,在输入栏按住Tab按键,他会按照你摆放的顺序一次转跳 二、编辑Tab顺序 方法一 然后鼠标左击就可以改变…

前端JavaScript篇之对this对象的理解

目录 对this对象的理解1. 函数调用模式:2. 方法调用模式:3. 构造器调用模式:4. apply、call和bind调用模式: 对this对象的理解 在JavaScript中,this关键字是一个非常重要的概念,它用于指向当前执行上下文中…

【CV论文精读】EarlyBird: Early-Fusion for Multi-View Tracking in the Bird’s Eye View

【CV论文精读】EarlyBird: Early-Fusion for Multi-View Tracking in the Bird’s Eye View 0.论文摘要 多视图聚合有望克服多目标检测和跟踪中的遮挡和漏检挑战。多视图检测和3D对象检测中的最新方法通过将所有视图投影到地平面并在鸟瞰视图(BEV)中执…

面试经典150题 -- 栈(总结)

总的链接 面试经典 150 题 - 学习计划 - 力扣(LeetCode)全球极客挚爱的技术成长平台 关于栈 -- stack 的学习链接 c的STL中的栈 -- stack-CSDN博客 20 . 有效的括号 这题直接用栈模拟就好了; 这里用一种取巧的方法 , 当遇见左括号,加入右…

JAVA设计模式之建造者模式详解

建造者模式 1 建造者模式介绍 建造者模式 (builder pattern), 也被称为生成器模式 , 是一种创建型设计模式. 定义: 将一个复杂对象的构建与表示分离,使得同样的构建过程可以创建不同的表示。 **建造者模式要解决的问题 ** 建造者模式可以将部件和其组装过程分开…

Dynamo批量处理多个Revit文件?

Hello大家好!我是九哥~ 最近很多小伙伴都在咨询Dynamo如何批量处理多个Revit文件,之前写过一篇《Dynamo批量修改多文件项目基点参数》,利用的是后台打开Revit的方式,可以实现一些批量操作的功能。 但是这个方法,对于一…

物理信息神经网络(PINN): 将物理知识融合到深度学习中

物理信息神经网络(PINN): 将物理知识融合到深度学习中 物理信息神经网络(PINN)简介PINN的工作原理PINN模型如何利用物理法则指导模型训练1. 定义物理问题和相应的物理定律2. 构建神经网络3. 定义损失函数数据误差项 (Data-fidelit…

IoC原理

Spring框架的IOC是基于Java反射机制实现的,那具体怎么实现的,下面研究一下 反射 Java反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意方法…

多 split 窗口 in Gtkmm4

文章目录 效果预览实现概要源代码 效果预览 实现概要 使用Gtk::Paned虽然 Paned 只能装两个子控件, 但是我可以嵌套 paned1 装 box1 和 box2 paned2 装 paned1 和 box3 源代码 #include <gtkmm.h> class ExampleWindow : public Gtk::Window { public:ExampleWindow()…

大模型基础架构的变革:剖析Transformer的挑战者(下)

上一篇文章中&#xff0c;我们介绍了UniRepLKNet、StripedHyena、PanGu-π等有可能会替代Transformer的模型架构&#xff0c;这一篇文章我们将要介绍另外三个有可能会替代Transformer的模型架构&#xff0c;它们分别是StreamingLLM、SeTformer、Lightning Attention-2&#xff…

07 A B 从计数器到可控线性序列机

07. A.从计数器到可控线性序列机 让LED灯按照亮0.25秒。灭0.75秒的状态循环亮灭让LED灯按照亮0.25秒&#xff0c;灭0.5秒&#xff0c;亮0.75秒&#xff0c;灭1秒的状态循环亮灭让LED灯按照指定的亮灭模式亮灭&#xff0c;亮灭模式未知&#xff0c;由用户随即指定。以0.25秒为一…

高职单招怎么搜答案? #经验分享#微信#笔记

当今社会&#xff0c;随着信息技术的迅猛发展&#xff0c;大学生们在学习过程中面临着各种各样的困难和挑战。而在这些挑战中&#xff0c;面对繁重的作业和复杂的题目&#xff0c;大学生搜题软件应运而生 1.题老大 这是一个公众号 亿级数量题库&#xff0c;可截图搜题&#…

动态SQl简单创建

创建pojo实体类&#xff0c;使用lombok注解 package com.example.pojo;import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;import java.time.LocalDate; import java.time.LocalDateTime;Data NoArgsConstructor AllArgsConstructor pu…

Maven私服部署与JAR文件本地安装

Nexus3 是一个仓库管理器&#xff0c;它极大地简化了本地内部仓库的维护和外部仓库的访问。 平常我们在获取 maven 仓库资源的时候&#xff0c;都是从 maven 的官方&#xff08;或者国内的镜像&#xff09;获取。团队的多人员同样的依赖都要从远程获取一遍&#xff0c;从网络方…

【每日一题】LeetCode——反转链表

&#x1f4da;博客主页&#xff1a;爱敲代码的小杨. ✨专栏&#xff1a;《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 ❤️感谢大家点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;&#xff0c;您的三连就是我持续更新的动力❤️ &#x1f64f;小杨水平有…

MySQL ——group by子句使用with rollup

group by 子句使用with rollup关键字之后&#xff0c;具有分组加和的功能。即&#xff1a;在所有的分组记录之后&#xff0c;自动新增一条记录&#xff0c;从全局计算所有记录的数据。 0 问题描述 求出每年的学生平均成绩&#xff0c;及历史至今的平均成绩&#xff0c;结果保留…

c++二叉树寒假特训题目(2)

hello&#xff0c;我是Joseph&#xff0c;今天推出第二期c二叉树寒假特训题目。 第一期传送门 第一期答案传送门 这期有7题&#xff0c;目录如下。 目录 题目 二叉树结点查找 二叉树是否对称 ​编辑 二叉排序树 层次遍历 根据前序中序求后序 二叉树高度 ​编辑 二…

【机器学习】合成少数过采样技术 (SMOTE)处理不平衡数据(附代码)

1、简介 不平衡数据集是机器学习和人工智能中普遍存在的挑战。当一个类别中的样本数量明显超过另一类别时&#xff0c;机器学习模型往往会偏向大多数类别&#xff0c;从而导致性能不佳。 合成少数过采样技术 (SMOTE) 已成为解决数据不平衡问题的强大且广泛采用的解决方案。 …

核心篇-OSPF技术之序(上)

文章目录 一. 实验专题1.1. 实验1&#xff1a;配置单区域OSPF1.1.1. 实验目的1.1.2. 实验拓扑1.1.3. 实验步骤&#xff08;1&#xff09;配置地址&#xff08;2&#xff09;运行OSPF 1.1.4. 实验调试&#xff08;1&#xff09;查看接口信息&#xff08;2&#xff09;查看邻居状…

基于华为云欧拉操作系统(HCE OS)单节点容器化部署(Prometheus、node-exporter、Grafana)应用性能监控平台

写在前面 博文内容为 华为云欧拉操作系统入门级开发者认证(HCCDA – Huawei Cloud EulerOS)实验笔记整理认证地址&#xff1a;https://edu.huaweicloud.com/certificationindex/developer/9bf91efb086a448ab4331a2f53a4d3a1内容涉及&#xff0c;HCE OS 容器化部署(Prometheus、…