LabVIEW双光子荧光显微成像系统开发

双光子显微成像是一种高级荧光显微技术,广泛用于生物学和医学研究,尤其是用于活体组织的深层成像。在双光子成像过程中,振镜(Galvo镜)扮演了非常关键的角色,它负责精确控制激光束在样本上的扫描路径。以下是双光子成像实验的基本流程,以及各硬件的功能和它们如何协同工作来实现成像。

实验流程和硬件功能

  1. 激光源:

    • 双光子成像需要使用特定波长的激光,通常是近红外激光,因为它能深入组织且对生物样本的损伤较小。

    • 激光通过调制设备(如电光调制器EOM)进行强度调制,以控制照射到样本上的光量。

  2. 振镜(Galvo镜)系统:

    • 振镜系统包括X轴和Y轴两个振镜,负责在水平和垂直方向上快速、精确地移动激光束。

    • 振镜接收来自控制系统(如计算机通过数据采集卡DAQ发送的电压信号),这些信号转换为镜子的物理倾斜,以便于激光扫描整个视野或特定区域。

  3. 物镜:

    • 物镜聚焦激光束到样本上的一个微小点,并收集样本发出的荧光信号。

    • 对于深度成像,物镜的数值孔径(NA)和工作距离是重要参数。

  4. 探测器:

    • 探测器(通常是光电倍增管PMT或雪崩光电二极管APD)用于收集样本发出的荧光,并将光信号转换为电信号。

    • 在双光子成像中,由于荧光信号弱,探测器的灵敏度和信噪比非常关键。

  5. 数据采集和图像构建:

    • 数据采集系统(DAQ)同步控制振镜的移动和探测器的信号采集。

    • 计算机接收到的信号经过处理后,根据振镜的扫描路径重构成图像。

实验操作逻辑和实现

  1. 实验准备:

    • 选择合适的物镜和激光波长,准备好生物样本,并将样本置于显微镜台上。

  2. 设置扫描参数:

    • 通过软件(如ScanImage)设置扫描范围、扫描速度、像素分辨率等参数。

    • 调整激光功率和探测器增益,以获得最佳的图像质量和信噪比。

  3. 启动扫描:

    • 软件控制激光器启动,并通过DAQ向振镜发送电压信号,开始扫描过程。

    • 振镜按照预设的模式快速移动激光束,同时探测器同步收集从样本发出的荧光。

  4. 图像重构和分析:

    • 收集到的信号数据根据扫描路径被重构成图像。

    • 用户可以通过软件进行图像后处理,如对比度调整、3D重建、定量分析等。

  5. 深度成像:

    • 对于深层组织成像,可以通过改变物镜的焦距(使用Fast Z扫描)来获得不同深度的图像,从而构建三维图像。

双光子成像实验需要精密的硬件控制和高速数据处理。振镜系统的高速、精确控制是实现高分辨率成像的关键。整个过程通过软件集成,用户可以灵活设置实验参数,以适应不同的研究需求。

LabVIEW双光子荧光显微成像系统开发

双光子荧光显微镜扫描控制与成像系统是一个高端的生物医学成像技术,它结合了精密的光学、电子和计算技术来实现活体内部深层组织的高分辨率成像。本部分旨在详细解析这一系统的工作原理,包括双光子荧光原理、激光扫描控制技术、信号检测与图像重建方法等关键技术。

双光子荧光原理

双光子荧光显微镜技术基于双光子吸收效应,这是一种非线性光学现象。当两个光子几乎同时(在10^-15秒的时间窗内)击中染料分子,它们可以被同时吸收,使分子从基态跃迁到激发态。这种跃迁需要的光子能量是单光子吸收的两倍,但每个光子的能量只有单光子吸收所需能量的一半。因此,双光子吸收通常使用近红外激光,这样的光波长较长,能量较低,对生物样本的损伤小,并且能更深入地穿透生物组织。

激光扫描控制技术

双光子荧光显微镜的成像系统依赖于精确控制激光束在样品上的扫描。通常采用振镜(galvanometer-based mirrors)对激光束进行快速、精确的偏转,实现对样品的二维扫描。同时,通过改变激光焦点在样品内部的深度(z轴调整),可以获得样品的三维图像。这种扫描方式要求激光扫描系统和样品移动平台(如XYZ三维位移台)之间的精确同步控制,以及高速、高精度的数据采集和处理能力。

信号检测与图像重建

在双光子吸收发生后,激发态的分子会释放出荧光,回到基态。这些荧光信号被光电倍增管(PMT)等检测器捕获。由于双光子吸收的非线性特性,荧光产生的位置非常局限,这就使得成像具有很高的空间分辨率。收集到的荧光信号随后被转换为电信号,通过数据采集系统传输给计算机。

计算机中的成像软件,如LabVIEW开发的专门应用程序,负责对这些信号进行处理和图像重建。这包括信号的放大、滤波、去噪等预处理步骤,以及将收集到的点扫描数据组装成二维或三维图像。图像重建过程还可能包括对图像的进一步增强和分析,如对比度调整、伪色彩添加、三维重建等。

软件设计

用户界面设计

LabVIEW的用户界面,也称为前面板,提供了直观的图形操作界面,使得操作人员可以轻松地进行实验设置、监控实验过程和查看实验结果。在双光子显微系统中,前面板设计包括但不限于:

参数输入区,用于设置扫描速度、激光功率、采集时间等关键实验参数。

控制按钮,如“开始”、“停止”扫描、“保存数据”等。

实时显示区,用于显示扫描过程中的实时图像或数据波形。

结果显示区,展示最终的成像结果或数据分析结果。

系统控制逻辑

LabVIEW的块图是其程序设计的核心,使用图形化的编程语言(G语言)来实现。在双光子显微系统中,控制逻辑主要实现以下功能:

激光器控制,包括功率调整和波长选择。

扫描系统控制,精确控制激光束的扫描路径和速度。

数据采集系统控制,同步收集光电倍增管(PMT)的信号。

信号处理与图像重建,对采集到的信号进行处理,生成高质量的图像。

信号处理与图像重建

LabVIEW提供了丰富的信号处理和图像处理工具箱,支持对采集到的数据进行预处理、滤波、去噪等操作,以及完成从原始数据到最终图像的转换。具体步骤包括:

信号放大和数字化,将PMT的模拟信号转换为数字信号。

信号预处理,包括基线校正、滤波等,以提高信号质量。

图像重建,根据扫描路径和采集到的信号重建图像。

开发流程与实现

硬件与软件的集成

LabVIEW支持与多种硬件接口通信,包括GPIB、串口、USB、以太网等,这使得它能够轻松地与激光器、扫描控制器、数据采集卡等硬件集成。开发过程中,首先需要通过适当的接口与硬件连接,然后使用LabVIEW提供的驱动程序或API函数来实现对硬件的控制。

软件逻辑开发

开发人员需要使用LabVIEW的块图环境来设计系统的控制逻辑和数据处理流程。这通常涉及到循环结构(用于实现扫描控制)、条件结构(用于实现参数设置和控制决策)以及数据结构(用于存储和处理采集到的数据)。

调试与优化

LabVIEW提供了强大的调试工具,包括探针、执行高亮显示、单步执行等,这些工具帮助开发人员诊断和解决程序中的错误。此外,性能优化也是开发过程中的一个重要方面,包括代码优化、内存管理和并行处理等,以确保系统运行的高效和稳定。

LabVIEW在双光子荧光显微镜扫描控制与成像系统中的应用展示了其作为一个强大的图形化编程环境在科学研究和工程应用中的潜力。通过LabVIEW,复杂的控制逻辑和数据处理流程得以直观地实现,大大加快了开发进程,提高了系统的可靠性和用户的操作便利性。随着技术的进步,LabVIEW将继续在更多领域发挥其关键作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/671249.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

读分布式稳定性建设指南文档

最近还是在做一些和稳定性建设相关的事情,找到一份《分布式稳定性建设指南》文档,摘抄了其中的重点,以便后续回顾方便,一直没上传好资源,我之后再试试,原文内容质量非常高。 大家可以先看一级目录即可&…

掌握Web服务器之王:Nginx 学习网站全攻略!

介绍:Nginx是一款高性能的Web服务器,同时也是一个反向代理、负载均衡和HTTP缓存服务器。具体介绍如下: 轻量级设计:Nginx的设计理念是轻量级,这意味着它在占用最少的系统资源的同时提供高效的服务。 高并发能力&#x…

go 内存二进制数据操作

go 内存二进制数据操作 go 内存二进制数据直接操作 以数字类型为例 int(linux/macos 为int32,windows 为int64). 如果不清楚可以使用unsafe.Sizeof函数来查看(函数出来的值*8就是int位数) 若不使用内存二进制数据操作,你需要在每次获取数字内容时调用binary.Big…

五、机器学习模型及其实现1

1_机器学习 1)基础要求:所有的数据全部变为了特征,而不是eeg信号了 python基础已经实现了特征提取、特征选择(可选)进行了数据预处理.预处理指对数据进行清洗、转换等处理,使数据更适合机器学习的工具。S…

完全背包总结二

1.完全背包和0/1背包的区别? 完全背包的物体有无限个,可以多次放入 0/1背包的物体只有一个,只能放入一次 2.关于物品遍历顺序 在0/1背包中为了防止物品被重复放入,所以选择倒序遍历背包 而完全背包中,可以重复放入…

Datax3.0+DataX-Web部署分布式可视化ETL系统

一、DataX 简介 DataX 是阿里云 DataWorks 数据集成的开源版本,主要就是用于实现数据间的离线同步。DataX 致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源(即不同的数据库&#x…

找单身狗(C语言)

题目叙述: 一个数组中只有两个数字是出现一次,其他所有数字都出现了两次。 编写一个函数找出这两个只出现一次的数字。 例如: 数组的元素是:1,2,3,4,5,1,…

从零开始手写mmo游戏从框架到爆炸(八)— byte数组传输

导航:从零开始手写mmo游戏从框架到爆炸(零)—— 导航-CSDN博客 Netty帧解码器 Netty中,提供了几个重要的可以直接使用的帧解码器。 LineBasedFrameDecoder 行分割帧解码器。适用场景:每个上层数据包,使…

Rust 初体验

Rust 初体验 安装 打开官网,下载 rustup-init.exe, 选择缺省模式(1)安装。 国内源设置 在 .Cargo 目录下新建 config 文件,添加如下内容: [source.crates-io] registry "https://github.com/rus…

spring-security SecurityContextHolder

翻译版本【spring-security 6.2.1】SecurityContextHolder SecurityContextHolder Spring Security身份验证模型的核心是SecurityContextHolder。它包含SecurityContext。 SecurityContextHolder是Spring Security存储身份验证详细信息的地方。Spring Security并不关心Secur…

【C语言】深入理解函数指针

函数指针是 C 语言中一个非常有用且强大的概念,它允许我们将函数作为参数传递给其他函数、在运行时动态选择要调用的函数以及实现回调函数等功能。在本篇博客中,我们将深入探讨函数指针的概念、用法以及其在实际编程中的应用。 目录 前言 什么是函数指…

C++ 动态规划 状态压缩DP 蒙德里安的梦想

求把 NM 的棋盘分割成若干个 12 的长方形,有多少种方案。 例如当 N2,M4 时,共有 5 种方案。当 N2,M3 时,共有 3 种方案。 如下图所示: 2411_1.jpg 输入格式 输入包含多组测试用例。 每组测试用例占一行…

OCR文本纠错思路

文字错误类别:多字 少字 形近字 当前方案 文本纠错思路 简单: 一、构建自定义词典,提高分词正确率。不在词典中,也不是停用词,分成单字的数据极有可能是错字(少部分可能是新词)。错字与前后的…

webapi-元素的属性设置-图片切换的案例

元素的属性设置 1.目标 ​ 掌握图片的src属性的设置 在页面使用img标签显示一张图片, 点击这个图片更换一张新的图片 2.实现思路 使用img 指定src “路径” 指定id“one”获取img标签, 添加onclick 点击事件在事件处理程序函数体中修改图片的src的值 3.代码实…

uniapp设置不显示顶部返回按钮

一、pages文件中,在相应的页面中设置 "titleNView": {"autoBackButton": false} 二、对应的页面文件设置隐藏元素 document.querySelector(.uni-page-head-hd).style.display none

【Git】三棵“树”介绍

Git是一种分布式版本控制系统,它使用了三树原理来管理代码的变化和版本。 三树原理包括工作区树(Working Tree)、暂存区树(Staging Area/Index)和版本库树(Commit/HEAD)。 工作区树&#xff08…

计算机网络实验四

实验四 VLAN划分与配置 1、实验目的 • 理解并掌握Port Vlan的配置方法 • 理解并掌握掌握跨交换机实现VLAN的配置方法 2、实验设备 (1)实验内容1:交换机端口隔离—Port Vlan的配置 以太网交换机一台笔记本电脑一台PC机两台配置电缆、网…

二重指数和估计难多了

单变量指数和估计有指数对方法(1933年英国人E.Phillips创造),印度人B.R.Srinivasan在1960年代搞出的二重指数对理论(发表在 Math.Ann.),由于没用二变量同步的Weyl不等式,是很肤浅的,而且1988年德…

收藏:相当大赞的来自 Agilean产品团队的2篇关于重塑敏捷组织的绩效管理的文章

Agilean产品团队,是吴穹博士领导下最近在国内敏捷界很厉害的产品,今天看到两篇相当不错的说敏捷组织的上下篇文章,分享下,地址是:6个原则15项举措,重塑敏捷组织的绩效管理(上) 6个原…

星宸科技SSC8826Q 驾驶辅助(ADAS)行车记录仪方案

星宸科技SSC8826Q 驾驶辅助(ADAS)行车记录仪方案 一、方案描述 SSC8826Q是高度集成的行车记录仪、流媒体后视镜解决方案,主芯片为ARM Cortex A53,dual core,主频高达1.2GHz,集成了64-bit dual-core RISC 处…