ChatGPT高效提问—基础知识(LM、PLM以及LLM)

ChatGPT高效提问—基础知识(LM、PLM以及LLM)

​ 了解语言模型(language model, LM)、预训练语言模型(pre-trained language model, PLM)和大型语言模型(large language model, LLM)对于优化prompt非常重要。这些模型属于自然语言处理领域中最强大、最先进的技术之列,并广泛用于各种NLP任务,例如文本生成、文本分类、情感分析和机器翻译等。

​ 在选择模型时,需要考虑数据量、任务类型和准确率等多个方面。了解不同模型的特点和适用范围以及工作原理,可以帮助我们更好地进行选择和优化。例如,ChatGPT是一种预训练语言模型,它使用Transformer架构来学习自然语言的规律和特征。如果我们需要执行文本生成任务,ChatGPT可能是一个很好的选择,因为它能够生产高质量且流畅的文本。而对于文本分类任务,一个经过优化的大型语言模型可能更适合,因为它具有更高的准确率和较好的泛化能力。

1.2.1 语言模型

​ 语言模型是一种用于自然语言处理的统计模型,它能够对语言序列进行建模和预测。在自然语言处理领域,它通常用于判断一个句子是否合理,并为执行其他任务提供基础。

​ 语言模型通过学习文本数据中词语或自发的统计规律,来预测下一个词语或字符的出现概率。这种能力使得语言模型能够执行生成新文本、评估句子流畅度、文本纠错、机器翻译等任务。

​ 常见的语言模型包括基于n-gram的统计模型和基于神经网络的模型,如循环神经网络(RNN)、长短时记忆网络(LSTM)和近来的Transformer模型。

​ 语言模型的训练过程通常涉及使用大规模的文本语料库来学习词语之间的关联关系。模型根据上下文信息预测下一个词语的出现概率,这可以通过最大似然估计等方法进行优化。

​ 语言模型在许多自然语言处理任务中发挥着重要作用,例如自然语音识别、机器翻译、语音生成、语音合成等。它们为计算机理解和生成自然语言提供了基础,并在文本生成、对话系统和智能助手等领域有广泛应用。

1.2. 2 预训练语言模型

​ 预训练语言模型是通过无监督学习在大规模语料库上进行预先训练得到模型。PLM可以学习自然语言中的基本特征和规律,从而应用于下游的多种自然语言处理任务,并且可以通过微调来适应特定的任务。

​ 例如,BERT(Bidirectional Encoder Representations from Transformers)是一种典型的预训练语言模型。在预训练阶段,BERT使用大规模无标注语料库来训练模型,学习自然语言的基本特征和规律。在下游任务(如问答系统、文本分类等)中,BERT可以通过微调来适应特定的任务,从而获得优秀的性能。

1.2.3 大型语言模型

​ 大型语言模型是指参数数量巨大的语言模型,通常需要海量数据和计算资源进行训练。LLM可以通过预训练来学习自然语言特征,并在不同的下游任务中进行微调,从而在自然语言处理中获得不错的效果。

​ 例如,OpenAI的GPT-3是一个具有数千亿参数的大学语言模型,它的预训练过程使用了大量互联网语料库,并且在许多下游任务(如文本分类、生成和问答等)上表现出色。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/667653.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux 系统安装Allure

要在 Linux 系统上进行离线安装 Allure 命令行工具,可以按照以下步骤进行操作: 1. 在具有互联网连接的计算机上下载 Allure 的二进制压缩包。 可以从 Allure 的官方 GitHub 仓库(https://github.com/allure-framework/allure2/releases&…

flutter开发实战-ijkplayer视频播放器功能

flutter开发实战-ijkplayer视频播放器功能 使用better_player播放器进行播放视频时候,在Android上会出现解码失败的问题,better_player使用的是video_player,video_player很多视频无法解码。最终采用ijkplayer播放器插件,在flutt…

3D力导向树插件-3d-force-graph学习001

一、引入文件:下载静态js文件引入 1、**以vue项目测试,在index.html文件中引入静态文件(js文件可在官网下载)** 2、**也曾尝试用npm包下载引入的方法,总是会有报错,所以采用静态js文件引入的方式** 二、基…

git如何将分支名由main改为master

要将分支名从 “main” 改为 “master”,请按照以下步骤操作: 首先,确保你已经在要重命名的分支上。通常,这是 “main” 分支。要检查当前分支,请运行以下命令: git branch这将显示所有本地分支&#xff…

【高质量精品】2024美赛B题22页word版高质量半成品论文+多版保奖思路+数据+前四问思路代码等(后续会更新)

一定要点击文末的卡片,进入后,获取完整论文!! B 题整体模型构建 1. 潜水器动力系统失效:模型需要考虑潜水器在无推进力情况下的行为。 2. 失去与主船通信:考虑无法从主船接收指令或发送位置信息的情况。…

【AIGC核心技术剖析】DreamCraft3D一种层次化的3D内容生成方法

DreamCraft3D是一种用于生成高保真、连贯3D对象的层次化3D内容生成方法。它利用2D参考图像引导几何塑造和纹理增强阶段,通过视角相关扩散模型执行得分蒸馏采样,解决了现有方法中存在的一致性问题。使用Bootstrapped Score Distillation来提高纹理&#x…

LabVIEW与EtherCAT实现风洞安全联锁及状态监测

LabVIEW与EtherCAT实现风洞安全联锁及状态监测 在现代风洞试验中,安全联锁与状态监测系统发挥着至关重要的作用,确保了试验过程的安全性与高效性。介绍了一套基于EtherCAT总线技术和LabVIEW软件开发的风洞安全联锁及状态监测系统。该系统通过实时、可靠…

jmeter-04创建请求

文章目录 一、发送请求-查看响应流程二、新建请求三、选择请求方式,填写url1.发送get请求当只有请求方式不一样的时候,参数都填写在参数栏里面,GET请求与POST请求的区别? 2.发送post请求2.1 application/x-www-form-urlencoded2.2…

鸿蒙4.0.0 安装minitouch

鸿蒙4.0.0 安装minitouch ubuntu 系统 minitouch 地址 https://github.com/DeviceFarmer/minitouch 因为 鸿蒙4.0.0 对应安卓12 API版本31 所以启动 minitouch 需要 STFService 地址 https://github.com/openstf/STFService.apk 到release下载最新的STFService.apk &…

基于深度学习的SSVEP分类算法简介

基于深度学习的SSVEP分类算法简介 1、目标与范畴2、深度学习的算法介绍3、参考文献 1、目标与范畴 稳态视觉诱发电位(SSVEP)是指当受试者持续注视固定频率的闪光或翻转刺激时,在大脑枕-额叶区域诱发的与刺激频率相关的电生理信号。与P300、运…

C系列-柔性数组

🌈个人主页: 会编程的果子君 ​💫个人格言:“成为自己未来的主人~” 目录 ​编辑 柔性数组 柔性数组的特点 柔性数组的使用 柔性数组的优势 柔性数组 也许你从来没有听说过柔性数组这个概念,但是它确实是存在的,C99中&#…

vue学习——集成sass

安装 pnpm i sass sass-loader -D在vite.config.ts文件配置: export default defineConfig({css: {preprocessorOptions: {scss: {javascriptEnabled: true,additionalData: import "./src/styles/variable.scss";,},},},} }创建三个文件 src/styles/index.scss //…

PyTorch 2.2 中文官方教程(十八)

开始使用完全分片数据并行(FSDP) 原文:pytorch.org/tutorials/intermediate/FSDP_tutorial.html 译者:飞龙 协议:CC BY-NC-SA 4.0 作者:Hamid Shojanazeri,Yanli Zhao,Shen Li 注意…

Hudi学习 6:Hudi使用

准备工作: 1.安装hdfs https://mp.csdn.net/mp_blog/creation/editor/109689143 2.安装spark spark学习4:spark安装_hzp666的博客-CSDN博客 3.安装Scala Hudi学习6:安装和基本操作_hzp666的博客-CSDN博客 spark-shell 写入和读取hudi 2.…

python常用pandas函数nlargest / nsmallest及其手动实现

目录 pandas库 Series和DataFrame nlargest和nsmallest 用法示例 代替方法 手动实现 模拟代码 pandas库 是Python中一个非常强大的数据处理库,提供了高效的数据分析方法和数据结构。它特别适用于处理具有关系型数据或带标签数据的情况,同时在时间序列分析方面也有着出…

Springboot mybatis关于bean中含有表中不存在的字段

1、当使用mybatis plus时,可用TableField(exist false) Data TableName("comp_sta_scale_t") public class Scale implements Serializable {/*** 唯一主键*/TableIdprivate String id;/*** 资源id*/Excel(name "资源id", mergeVertical tr…

基于springboot地方美食分享网站源码和论文

基于springboot地方美食分享网站源码和论文361 首先,论文一开始便是清楚的论述了系统的研究内容。其次,剖析系统需求分析,弄明白“做什么”,分析包括业务分析和业务流程的分析以及用例分析,更进一步明确系统的需求。然…

嵌入式中经典面试题分析

1.关键字static的作用是什么?为什么static变量只初始化一次? 1)修饰局部变量:使得变量变成静态变量,存储在静态区,存储在静态区的数据周期和程序相同, 在main函数开始前初始化,在退…

7min到40s:SpringBoot 启动优化实践!

目录 背景 1 耗时问题排查 1.1 观察 SpringBoot 启动 run 方法 1.2 监控 Bean 注入耗时 2 优化方案 2.1 如何解决扫描路径过多? 2.2 如何解决 Bean 初始化高耗时? 3 新的问题 3.1 SpringBoot 自动化装配,让人防不胜防 3.2 使用 sta…

泡泡清新文艺的微社区系统PHP源码

泡泡微社区,小巧而强大,为您带来卓越的社区交流体验。 凭借GoZinc的先进架构,泡泡在保持轻盈身姿的同时,功能一应俱全。前端采用Vue3匠心打造,界面清新简约,三栏式布局仿若Twitter,让您一见倾心…