[Linux 进程(六)] 写时拷贝 - 进程终止

在这里插入图片描述

文章目录

  • 1、写时拷贝
  • 2、进程终止
    • 2.1 进程退出场景
      • 2.1.1 退出码
      • 2.1.2 错误码
      • 错误码 vs 退出码
      • 2.1.3 代码异常终止引入
    • 2.2 进程常见退出方法
      • 2.2.1 exit函数
      • 2.2.2 _exit函数

本片我们主要来讲进程控制,讲之前我们先把写时拷贝理清,然后再开始讲进程控制。

1、写时拷贝

我们第一篇进程文章中,讲到了系统接口fork()创建子进程,最后我们提了五个问题,第五个问题:如何理解同一个id变量,怎么会有不同的值? 写时拷贝将为你解答该问题。记不清的伙伴点这里回顾那篇文章
通常,父子代码共享,父子在不写入时,数据也是共享的,当任意一方试图写入,便以写时拷贝的方式各自一份副本。具体见下图:
在这里插入图片描述
当父进程创建子进程之后,子进程的页表是拷贝父进程的,但子进程要在数据段进行写入(代码段不支持修改),就需要重新申请空间,将原数据拷贝后再做写入我们并不是将整块数据进行改写的,可能只是修改部分数据),并修改页表,这部分工作是由操作系统做的。 但是该工作是需要时机的,操作系统并不知道你什么时候是要做写入的。
我们先说一个**结论**:父进程创建子进程的时候,首先将自己的读写权限改为只读,然后再创建子进程。

用户是不知道的!用户将来可能会对数据(权限为读写,代码段是只读) 进行写入!此时,页表的转换会因为权限问题出错,这时操作系统就接入了。但是出错也分真假:

  • 真出错。代码段是不可以写入的,但是我们修改的区域在code_start~code_end(代码区起始结束区域),这时就是越界/真出错。
  • 假出错。对数据区的写入,数据区是可以读写的,只是我们页表中改成了只读。这样的不是出错,是触发进行重新申请内存,拷贝内容的策略机制。

我们终于明白了,子进程拷贝下父进程的页表后,将数据对应的页表条目权限改为只读,通过让操作系统触发异常的方式,让操作系统帮我们进行写时拷贝的,完成后再把对应的页表条目改为读写,没有写入的依旧是只读。

2、进程终止

我们先来提出一个 问题:我们C语言代码main函数最后都有一个return 0,返回0时给谁返回呢?
main函数也是被调用的,所以注定谁调用就给谁返回。我们写一段代码来看看:

#include <stdio.h>int main()
{return 10;
}

我们main函数中什么都不写,直接返回值为10。
当编译运行后,它的父进程是bash,会将返回值交给父进程,用指令echo $?获取刚刚的结果。
在这里插入图片描述

打印出来这是现象。
?是环境变量,保存的是最近一个子进程执行完毕的退出码。
在这里插入图片描述

第二次查看退出码为0,是因为上一个echo执行是成功的,0代表了成功。
由此我们展开下面的话题:

2.1 进程退出场景

  • 代码运行完毕,结果正确
  • 代码运行完毕,结果不正确
  • 代码异常终止

2.1.1 退出码

在多进程环境中,我们创建子进程就是为了帮我们去做事,这里“我们”是父进程,子进程事做的怎么样,父进程是需要知道的。在main函数中,返回值0代表正确,非0代表错误,父进程就是依靠返回值来判断是否正确的做完了任务。
当返回0,正确大家不会关心这个过程;但是返回非0,意味着错误,我们最想知道的是错误的原因是什么。所以我们可以用不同的数字表示不同的原因!但是不便于人阅读,所以我们需要一些能够将数字转化成错误码的字符串描述方案。C语言给我们有提供一批接口,我们也可以自定义一批我们自己的错误码与错误信息,把不同数字转化成不同出错原因的接口:

在这里插入图片描述

我们写一段代码来打印一下所有的退出码与对应的信息:

#include <stdio.h>
#include <string.h>int main()
{for(int i = 0; i < 200; i++){printf("%d: %s\n", i, strerror(i));}return 0;
}

在这里插入图片描述

这就是退出码,不同的退出码代表不同的出错原因。
我们来举例子看一下:
在这里插入图片描述

退出码是2,错误信息描述是没有这样的文件或目录。跟我们上面查看的退出码以及对应信息是匹配的。
结论main函数的退出码是可以被父进程获取的,用来判断子进程的运行结果。

2.1.2 错误码

C语言还有一个错误码,errno,我们下面来学一下看看有什么不同:
我们先写一个代码测试一下:

#include <stdio.h>
#include <string.h>
#include <errno.h>int main()
{printf("before: %d\n", errno);FILE* fp = fopen("./log.txt", "r");printf("after: %d, error string: %s\n", errno, strerror(errno));return 0;
}

我们当前路径下是不存在log.txt文件的,以读的方式打开肯定是错误的,我们打开前输出一次,打开后输出一次。
在这里插入图片描述
这说明,错误码会在调用接口的时候被设置。

错误码 vs 退出码

  • 错误码通常是衡量一个库函数或者是一个系统调用(Linux内核也是用C语言写的,所以它也可以访问errno)函数的调用情况。
  • 退出码通常是一个进程退出的时候,他的退出结果。
  • 相同点:当失败时,用来衡量 函数/进程 出错时的出错详细原因。

当我们写的代码有多个系统接口和库函数,我们可以把退出码和错误码设置成一致:

#include <stdio.h>
#include <string.h>
#include <errno.h>int main()
{int ret = 0;printf("before: %d\n", errno);FILE* fp = fopen("./log.txt", "r");if(NULL == fp){printf("after: %d, error string: %s\n", errno, strerror(errno));ret = errno;}return ret;
}

strerror()函数可以将错误码转化成错误信息。
在这里插入图片描述
错误信息一输出用户就知道是哪出错了,echo $? 输出的退出码父进程bash也就知道了。

2.1.3 代码异常终止引入

代码异常终止,一般代码都没跑完,退出码也就没意义了。
我们举两个异常的例子:

#include <stdio.h>
#include <string.h>
#include <errno.h>int main()
{printf("before: %d\n", errno);FILE* fp = fopen("./log.txt", "r");if(NULL == fp){printf("after: %d, error string: %s\n", errno, strerror(errno));}int a = 10;a /= 0; // 除0错误return 0;
}

在这里插入图片描述

#include <stdio.h>
#include <string.h>
#include <errno.h>int main()
{printf("before: %d\n", errno);FILE* fp = fopen("./log.txt", "r");if(NULL == fp){printf("after: %d, error string: %s\n", errno, strerror(errno));}int* ptr = NULL;*ptr = 10; // 野指针return 0;
}

在这里插入图片描述

野指针一般是段错误。
代码跑起来之后就是进程,出问题是进程异常了,异常后它就不跑了,操作系统管理的进程,其实是操作系统把进程杀掉了(通过发送信号的方式杀掉的)。
我们查看一下信号:

在这里插入图片描述

可以看到SIG前缀是统一的,我们刚才的两个错误分别可以转换为8号与11号信号,FPE代表Floating point exception,SEGV代表Segmentation fault。
我们再来测试一下,看看其他的信号可不可以杀掉不是对应问题的进程:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>int main()
{while(1){printf("I am a normal process: %d\n", getpid());}return 0;
}

在这里插入图片描述

我们发现,其实代码并没有错误,但是用户用的8号信号杀掉的进程,所以显示的就是8号所对应的异常信息。
结论进程出异常,异常信息会被操作系统检测出来,进而转换为信号然后杀掉进程。
最后,子进程把父进程交给的任务完成的怎么样,只要守好退出码信号编号为0就是正确,因为错误码从1开始的两个数字就可以很好的监督任务的完成程度。

2.2 进程常见退出方法

2.2.1 exit函数

我们先来查看一下exit怎么使用!
在这里插入图片描述

结论参数是进程的退出码,类似于main函数的return n。
了解了使用方法,我们来写一段代码试试:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>int main()
{printf("I am a process, pid: %d, ppid:%d\n", getpid(), getppid());exit(12); // 参数是进程的退出码,类似于main函数的return n//return 0;
}

在这里插入图片描述
我们再来看一个场景:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>int func()
{printf("call func function done!\n");// 任意地点调用exit,表示进程退出,不进行后续执行exit(21);
}int main()
{func();printf("I am a process, pid: %d, ppid:%d\n", getpid(), getppid());// 参数是进程的退出码,类似于main函数的return nexit(12);//return 0;
}

在这里插入图片描述

结论任意地点调用exit,表示进程退出,不进行后续执行。
我们可以在验证一下:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>int func()
{printf("call func function done!\n");// 任意地点调用exit,表示进程退出,不进行后续执行exit(21);
}int main()
{exit(31);func();printf("I am a process, pid: %d, ppid:%d\n", getpid(), getppid());// 参数是进程的退出码,类似于main函数的return nexit(12);//return 0;
}

在这里插入图片描述

经过这次的验证说明我们得出的结论是正确的。

2.2.2 _exit函数

依旧先查看怎么使用!
在这里插入图片描述

我们来使用一下试试:

#include <stdio.h>
#include <stdlib.h>int func()
{printf("call func function done!\n");return 11;
}int main()
{func();printf("I am a process, pid: %d, ppid:%d\n", getpid(), getppid());// 参数是进程的退出码,类似于main函数的return nexit(12);//return 0;
}

在这里插入图片描述

我们发现和exit的现象是一样的。
我们再来看看:

#include <stdio.h>
#include <unistd.h>int func()
{printf("call func function done!\n");//return 11;// 任意地点调用exit,表示进程退出,不进行后续执行_exit(21);
}int main()
{func();printf("I am a process, pid: %d, ppid:%d\n", getpid(), getppid());// 参数是进程的退出码,类似于main函数的return n//_exit(12);//return 0;
}

在这里插入图片描述

我们看到,_exit和exit 它两表现出的结果是一致的,但是这并不能说明它两没有区别!
为了让大家看到不一致性,我们继续写代码来观察:

#include <stdio.h>
#include <stdlib.h>int main()
{printf("you can see me!");sleep(3);exit(1);
}

在这里插入图片描述
在这里插入图片描述

我们打印的字符串没有\n,因为缓冲区的原因,字符串不会立即刷新出来,在进程退出后,exit对缓冲区强制刷新,才将字符串打印在屏幕上!
我们这次改为_exit来试试:

#include <stdio.h>
#include <unistd.h>int main()
{printf("you can see me!\n");sleep(3);_exit(1);
}

在这里插入图片描述
在这里插入图片描述
我们发现,_exit函数并不会在进程退出时对缓冲区做强制刷新!
结论:

  • exit是库函数(3号手册),_exit是系统调用(2号手册);
  • exit终止进程的时候,会自动刷新缓冲区。_exit终止进程的时候,不会自动刷新缓冲区(直接将数据扔掉了)。
  • 我们目前知道的缓冲区,绝对不在操作系统内部!(具体的后面再详谈)
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/666099.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

简单的程序员简历模板

以下是一个简单的程序员简历模板&#xff0c;您可以根据自己的经验和需求进行调整&#xff1a; 姓名&#xff1a;张三联系方式&#xff1a;XXX-XXXX-XXXX电子邮箱&#xff1a;zhangsanexample.com个人网址&#xff1a;&#xff08;如果适用&#xff0c;比如GitHub、个人博客等&…

[office] 在Excel2010中设定某些单元格数据不参与排序的方法介绍 #其他#知识分享#笔记

在Excel2010中设定某些单元格数据不参与排序的方法介绍 在Excel中排序&#xff0c;相信大家都会了&#xff0c;直接将一组数据按照从小到大或者从大到小进行排序&#xff0c;但是&#xff0c;现在要求我们规定其中几组数据不进行排序&#xff0c;只排序其余的部分。又该如何操作…

ruoyi(若依)(el-menu也可参考)菜单栏过长显示省略号才显示气泡

一、背景 若依前后端分离的版本&#xff0c;新版本中优化了菜单名称过长悬停显示标题&#xff0c;但是是悬浮所有长度大于5的标题。可以查看提交记录&#xff1a;https://gitee.com/y_project/RuoYi-Cloud/commit/99932d91c0144da9f34f5bb05683cc0b86303217 但是我希望是只悬浮…

如何判断测试覆盖率是否达标?常见提高覆盖率方法总结

前言 大家好&#xff0c;我是chowley&#xff0c;今天来介绍一下测试覆盖率的内容。 在软件开发的过程中&#xff0c;测试覆盖率是衡量测试质量的重要指标之一。通过有效的测试覆盖&#xff0c;我们能够更全面地了解软件在不同条件下的运行情况&#xff0c;减少潜在的缺陷和问…

VC++中使用OpenCV绘制直线、矩形、圆和文字

VC中使用OpenCV绘制直线、矩形、圆和文字 在VC中使用OpenCV绘制直线、矩形、圆和文字非常简单&#xff0c;分别使用OpenCV中的line、rectangle、circle、putText这四个函数即可。具体可以参考OpenCV官方文档&#xff1a;https://docs.opencv.org/4.x/index.html 下面的代码展…

nodejs express中使用连接池或者MySQL链接数据库出现Cannot read property ‘query‘ of undefined报错

1.如果你已经排除了数据库的启动状态原因和本地服务是否启动的原因 2.不妨看看你是否没有排查其他的数据库&#xff0c;我就是一直在排查第一个主数据库&#xff0c;却忘了我还连接了第二个数据库&#xff0c;就是第二个数据库的原因&#xff0c;出现这个错误。 3.我们可以通…

【文本到上下文 #10】探索地平线:GPT 和 NLP 中大型语言模型的未来

一、说明 欢迎阅读我们【文本到上下文 #10】&#xff1a;此为最后一章。以我们之前对 BERT 和迁移学习的讨论为基础&#xff0c;将重点转移到更广阔的视角&#xff0c;包括语言模型的演变和未来&#xff0c;特别是生成式预训练转换器 &#xff08;GPT&#xff09; 及其在 NLP 中…

「 CISSP学习笔记 」08. 安全运营

该知识领域涉及如下考点&#xff0c;具体内容分布于如下各个子章节&#xff1a; 理解并遵守调查执行记录和监控活动执行配置管理 (CM)&#xff08;例如&#xff0c;预配、基线、自动化&#xff09;应用基本的安全操作概念应用资源保护执行事故管理执行和维护检测和预防措施实施…

我们使用的IPv4耗尽(We‘re running out of IPv4)

IPv4(Internet Protocol version 4)是互联网上使用最广泛的网络层协议之一,于1981年在 RFC 791 中发布,它定义了 32 位的IP地址结构和基本的协议操作。 由于 IPv4 使用 32 位的地址,因此只有四十亿(4,294,967,296,2^32)个地址。 这就导致随着地址不断被分配,IPv4 地…

邦芒忠告:初入职场的菜鸟小白谨记这3种聊天

在人际交往上应该注意分寸&#xff0c;也应该注意尺度&#xff0c;也应该注意不要麻烦别人&#xff0c;也不能够出现一些言语上的漏洞&#xff0c;也不能够说出一些不合时宜的话。 1、不要轻易表现出你特别讨厌的东西 比如某些明星&#xff0c;说不定他们十分喜欢&#xff0c;谈…

【力扣刷题练习】876. 链表的中间结点

题目描述&#xff1a; 给你单链表的头结点 head &#xff0c;请你找出并返回链表的中间结点。 如果有两个中间结点&#xff0c;则返回第二个中间结点。 题目解答&#xff1a; class Solution {public ListNode middleNode(ListNode head) {ListNode slow head, fast head…

用threejs模拟太阳系运动三维模型

最近在学习threejs&#xff0c;觉得非常有趣。于是决定用这个来模拟太阳系各行星的运行轨迹。 关于threejs的基础知识就不再赘述了&#xff0c;大家可以查看官网&#xff1a;threejs官方网站 本文的demo可以从下面下载&#xff1a;threejs模拟太阳系八大行星公转及自转三维模…

未来电话呼叫技术的社会影响与发展趋势----云微呼

未来电话呼叫技术将以更为智能化、便捷化和个性化为主要发展趋势&#xff0c;其所带来的社会影响也将是多层面的。以下将探讨未来电话呼叫技术可能的发展趋势以及对社会的影响&#xff1a; 智能化助力生活便捷&#xff1a; 未来电话呼叫技术将更加智能化&#xff0c;通过人工智…

聊聊PowerJob日志的上报及存储

序 本文主要研究一下PowerJob的日志上报及存储 OmsLoggerFactory.build tech/powerjob/worker/log/OmsLoggerFactory.java public class OmsLoggerFactory {public static OmsLogger build(Long instanceId, String logConfig, WorkerRuntime workerRuntime) {LogConfig cf…

uniapp 组件封装

1. uniapp 组件封装时间戳格式化为星期 1.1. components/m-week.vue <template><text>{{week}}</text> </template> <script>export default {props: {time: String},mounted(e) {this.week this.getWeek(Number(this.time))},data() {return …

FreeMark ${r‘原样输出‘} ${r“原样输出“}

FreeMark ${r’原样输出’} ${r"原样输出"} 在${}使用 小写字母r接两个单引号或两个双引号包裹的内容可以原样输出, 字母r只能用小写 ${r想要原样输出的内容} --用了单引号${r"想要原样输出的内容"} --用了双引号 例子: ${r"${r}"} 得到 ${r…

Unity引擎学习笔记之【动画、动画器操作】

动画Animate Animation是基于关键帧的动画系统&#xff0c;适用于简单的动画需求&#xff1b; 而Animator是一种状态机驱动的动画系统&#xff0c;适用于更复杂的动画逻辑和交互式动画。 通常&#xff0c;Animator组件更适合用于游戏中的角色动画控制&#xff0c; 而Animation…

车载测试Vector工具——基于DoIP的ECU/车辆的连接故障排除

车载测试Vector工具——基于DoIP的ECU/车辆的连接故障排除 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和…

【考研408】计算机网络笔记

文章目录 计算机网络体系结构计算机网络概述计算机网络的组成计算机网络的功能计算机网络的分类计算机网络的性能指标课后习题 计算机网络体系结构与参考模型计算机网络协议、接口、服务的概念ISO/OSI参考模型和TCP/IP模型课后习题 物理层通信基础基本概念奈奎斯特定理与香农定…

PyCharm / DataSpell 导入WSL2 解析器,实现GPU加速

PyCharm / DataSpell 导入WSL2 解析器的实现 Windows的解析器不好么&#xff1f;设置WSL2和实现GPU加速为PyCharm / DataSpell 设置WSL解析器设置Interpreter Windows的解析器不好么&#xff1f; Windows上的解析器的确很方便&#xff0c;也省去了我们很多的麻烦。但是WSL2的解…