基于深度学习网络的人员吸烟行为检测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

clc;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')load FRCNN.mat
In_layer_Size  = [224 224 3];
imgPath = 'smoke_train/';        % 图像库路径
imgDir  = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt     = 0;
for i = 1:length(imgDir)          % 遍历结构体就可以一一处理图片了iif mod(i,12)==1figureendcnt     = cnt+1;subplot(3,4,cnt); img = imread([imgPath imgDir(i).name]); %读取每张图片I               = imresize(img,In_layer_Size(1:2));[bboxes,scores] = detect(detector,I);[Vs,Is] = max(scores);if isempty(bboxes)==0I1              = insertObjectAnnotation(I,'rectangle',bboxes(Is,:),Vs);elseI1              = I;Vs              = 0;endimshow(I1)title(['检测置信度:',num2str(Vs)]);if cnt==12cnt=0;end
end
0056

4.算法理论概述

         基于Faster R-CNN深度学习网络的人员吸烟行为检测算法是一种利用深度学习技术进行人员吸烟行为检测的方法。该算法主要基于Faster R-CNN网络结构,通过对视频或图像序列中的人员进行目标检测和特征提取,实现吸烟行为的检测。

  1. 算法原理

该算法的原理主要分为三个步骤:区域提议、特征提取和目标分类。

(1)区域提议

在区域提议阶段,算法通过区域生成网络(Region Proposal Network,RPN)产生一系列的目标区域。RPN是一种基于卷积神经网络(CNN)的神经网络结构,通过对输入图像进行卷积操作,提取出图像的特征图,并根据预设的规则生成一系列的目标区域。这些目标区域可能包含人脸、烟支等目标,但不包含背景信息。

(2)特征提取

在特征提取阶段,算法将提取出的目标区域输入到卷积神经网络(CNN)中进行特征提取。CNN是一种深度学习网络结构,通过对输入数据进行卷积操作,提取出数据的特征。通过对目标区域进行卷积操作,可以得到目标区域的特征图。

(3)目标分类

在目标分类阶段,算法将提取出的特征图输入到全连接层(FC)中进行分类和边框修正。FC是一种深度学习网络结构,用于将输入数据映射到目标标签空间。通过对特征图进行全连接操作,可以得到目标区域的分类结果和边框信息。

该算法的主要公式包括卷积神经网络(CNN)的公式、RPN的公式和FC的公式。

(1)卷积神经网络(CNN)的公式

CNN是一种常用的深度学习网络结构,主要用于图像特征的提取。它的基本结构包括多个卷积层、池化层和全连接层。其中,卷积层用于对输入图像进行卷积操作,提取出图像的特征;池化层用于对特征图进行降采样,减少网络的参数数量;全连接层用于将特征图映射到目标标签空间,进行分类和回归等任务。

CNN的公式如下:

(2)RPN的公式

RPN是一种基于CNN的目标区域生成网络,用于产生一系列的目标区域。它的基本结构与CNN相似,但在最后一层卷积层之后增加了两个全连接层,用于生成目标区域的边框信息和置信度信息。RPN的公式如下:

(3)FC的公式

FC是一种深度学习网络结构,用于将输入数据映射到目标标签空间。它的基本结构是一个全连接层,每个节点都与前一层的所有节点相连。

FC的公式如下:

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/66535.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode笔记:Weekly Contest 361

LeetCode笔记:Weekly Contest 361 0. 吐槽1. 题目一 1. 解题思路2. 代码实现 2. 题目二 1. 解题思路2. 代码实现 3. 题目三 1. 解题思路2. 代码实现 4. 题目四 1. 解题思路2. 代码实现 比赛链接:https://leetcode.com/contest/weekly-contest-361 0. …

jmeter 准确的吞吐量定时器 Precise Throughput Timer

准确的吞吐量定时器使用实例: 说明:配置10个线程,每个线程请求200次,通过准确地屯托梁定时器模拟QPS为20的场景 配置测试接口参考链接 配置jmeter测试脚本,主要关注准确的吞吐量定时器参数配置 目延迟线程已确保目标吞…

Mariadb高可用(四十)

目录 一、概述 (一)概念 (二)组成 (三)特点 (四)工作原理 二、实验要求 三、构建MHA (一)ssh免密登录 (二)安装mariadb数据库…

python技术面试题合集(二)

python技术面试题 1、简述django FBV和CBV FBV是基于函数编程,CBV是基于类编程,本质上也是FBV编程,在Djanog中使用CBV,则需要继承View类,在路由中指定as_view函数,返回的还是一个函数 在DRF中的使用的就是…

内网隧道代理技术(二十一)之 CS工具自带中转技术上线不出网机器

CS工具自带上线不出网机器 如图A区域存在一台中转机器,这台机器可以出网,这种是最常见的情况。我们在渗透测试的过程中经常是拿下一台边缘机器,其有多块网卡,边缘机器可以访问内网机器,内网机器都不出网。这种情况下拿这个边缘机器做中转,就可以使用CS工具自带上线不出网…

windows-nessus安装

1、下载 路径:Download Tenable Nessus | Tenable 2、获取active code 路径:Tenable Nessus Essentials Vulnerability Scanner | Tenable 3、安装 challenge code:上图马赛克位置 active code:获取active code第二张图片的马赛克位置 4、激活 5、安装…

word中标题及公式自动编号

word中公式自动编号 1. 实现目标2. 详细步骤2.1 添加自动编号功能2.2 输入标题并编号2.3 新建公式2.3.1 编辑公式2.3.4 公式编号的交叉引用2.3.5 公式位置变动以及更新正文中的编号 在word中自动编号公式一直是一个老大难问题,现在通过总结网友们提供的方法&#xf…

【数仓基础(一)】基础概念:数据仓库【用于决策的数据集合】的概念、建立数据仓库的原因与好处

文章目录 一. 数据仓库的概念1. 面向主题2. 集成3. 随时间变化4. 非易失粒度 二. 建立数据仓库的原因三. 使用数据仓库的好处 一. 数据仓库的概念 数据仓库的主要作用: 数据仓库概念主要是解决多重数据复制带来的高成本问题。 在没有数据仓库的时代,需…

【80天学习完《深入理解计算机系统》】第十二天3.6数组和结构体

专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客,如有问题交流,欢迎评论区留言,一定尽快回复!(大家可以去看我的专栏,是所有文章的目录)   文章字体风格: 红色文字表示&#…

稀疏数组的实现

文章目录 目录 文章目录 前言 一 什么是稀疏数组? 二 稀疏数组怎么存储数据? 三 稀疏数组的实现 总结 前言 大家好,好久不见了,这篇博客是数据结构的第一篇文章,望大家多多支持! 一 什么是稀疏数组? 稀疏数组(Sparse Array)是一种数据结构&a…

javaweb入门版学生信息管理系统-增删改查+JSP+Jstl+El

dao public class StudentDao {QueryRunner queryRunner QueryRunnerUtils.getQueryRunner();//查询全部学生信息public List<Student> selectStudent(){String sql "select * from tb_student";List<Student> students null;try {students queryRunn…

从C语言到C++_36(智能指针RAII)auto_ptr+unique_ptr+shared_ptr+weak_ptr

目录 1. 智能指针的引入_内存泄漏 1.1 内存泄漏 1.2 如何避免内存泄漏 2. RAII思想 2.1 RAII解决异常安全问题 2.2 智能指针原理 3. auto_ptr 3.1 auto_ptr模拟代码 4. unique_ptr 4.1 unique_ptr模拟代码 5. shared_ptr 5.1 shared_ptr模拟代码 5.2 循环引用 6.…

数据可视化与数字孪生:理解两者的区别

在数字化时代&#xff0c;数据技术正在引领创新&#xff0c;其中数据可视化和数字孪生是两个备受关注的概念。尽管它们都涉及数据的应用&#xff0c;但在本质和应用方面存在显著区别。本文带大探讨数据可视化与数字孪生的差异。 概念 数据可视化&#xff1a; 数据可视化是将复…

学习振弦采集模块的开发基本原理

飞讯教学篇&#xff1a;学习振弦采集模块的开发基本原理 振弦采集模块是一种用于测量物体振动、形变、压力等物理量的电子设备。它通过测量物体的振动变化&#xff0c;可以得出物体在不同条件下的动态特性&#xff0c;对于工程设计、科学研究、医学检测等领域都有广泛应用。本…

对话出海企业:2023亚马逊云科技出海日圆桌论坛

在全球经济亟待复苏的今天&#xff0c;持续对外开放是中国未来经济发展重要的“两条腿”之一。在愈发饱和的国内市场&#xff0c;中国企业需要对外寻找全新机遇才能在未来不确定的市场博弈下生存下去。“出海”&#xff0c;也成为近几年最炙手可热的词汇之一&#xff0c;大量中…

free

free 一、 查看当前系统内存的使用情况&#xff0c;它显示系统中剩余及已用的物理内存和交换内存&#xff0c;以及共享内存和被核心使用的缓冲区。 [rootlocalhost ~]# free -mtotal used free shared buffers cached Mem: 980 140…

巧用消息驱动解耦功能模块之间的复杂关系

不知各位看官遇到开发大型系统的时候&#xff0c;往往功能模块之间都有理不清的复杂关系&#xff0c;例如MES中的生产进度&#xff0c;ERP中的物品流向&#xff0c;单据的处理流程变更&#xff0c;库存的变更等等&#xff0c;很多时候&#xff0c;都是需要模块之间协作才能更好…

字符型注入([SWPUCTF 2021 新生赛]easy_sql)

拿到题目&#xff0c;查看源码&#xff0c;可知是要输入参数wllm。 输入参数/?wllm1&#xff0c;得到会显 继续输入参数/?wllm1&#xff0c;报错&#xff0c;确定为字符型漏洞 1.查看字段列表&#xff0c;发现在字段4报错&#xff0c;确定为3列 ?wllm-1 order by 3-- ?wl…

leetcode做题笔记118. 杨辉三角

给定一个非负整数 numRows&#xff0c;生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 思路一&#xff1a;动态规划 int** generate(int numRows, int* returnSize, int** returnColumnSizes){int **returnnum(int **)…

QT DAY 2

window.cpp #include "window.h" #include<QDebug> #include<QIcon> Window::Window(QWidget *parent) //构造函数的定义: QWidget(parent) //显性调用父类的构造函数 {//this->resize(430,330);this->resize(QSize(800,600));// this…