回归预测 | Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)

回归预测 | Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)

目录

    • 回归预测 | Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)
      • 预测效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制);
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE多指标评价;
5.霜冰优化学习率,隐藏层节点,正则化系数;

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式资源处直接下载:Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)。
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=RIME(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          
tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc")                                      % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); %% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/664962.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何处理我们的文本数据成构建词表

我们拿到在拿到一堆语料数据,或者是在网络中爬取下来的文本数据如何处理成为模型能够训练的数据呢?这里有我们先经过停用词和按字分词的处理之后,得到的问答对文本数据,input_by_word.txt 和 target_by_word.txt 。其中&#xff0…

2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测

2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测 目录 2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效…

Docker进阶篇-Docker网络

一、描述 1、docker不启动,默认网络情况 查看网卡情况使用,ifconfig或者ip addr ens33:本机网卡 lo:本机回环网络网卡 virbr0:在CentoS 7的安装过程中如果有选择相关虚拟化的的服务安装系统后,启动网卡时会发现 …

Web实战丨基于Django的简单网页计数器

文章目录 写在前面Django简介主要程序运行结果系列文章写在后面 写在前面 本期内容 基于django的简单网页计数器 所需环境 pythonpycharm或vscodedjango 下载地址 https://download.csdn.net/download/m0_68111267/88795604 Django简介 Django 是一个用 Python 编写的高…

游戏找不到d3dcompiler_43.dll怎么办?多种5种解决方法分享

在运行游戏的过程中,系统遇到了一个关键性的问题,即无法成功找到名为“d3dcompiler_43.dll”的动态链接库文件。这一特定的dll文件对于游戏的正常启动和图形渲染至关重要,它的缺失可能会导致游戏无法运行或者画面无法正确显示。通常情况下&am…

day07-CSS高级

01-定位 作用:灵活的改变盒子在网页中的位置 实现: 1.定位模式:position 2.边偏移:设置盒子的位置 left right top bottom 相对定位 position: relative 特点: 不脱标,占用自己原来位置 显示模…

10秒搞定!隔壁奶奶都能搞定的幻兽帕鲁、雾锁王国开服指南

最近《幻兽帕鲁》和《雾锁王国》非常火热,玩过的小伙伴们都说非常上头!有跟朋友对战需求的小伙伴们可以通过本文拥有一台高性价比的专用服务器,随时可以用来跟朋友一起玩游戏! 敲重点!!! 步骤…

2021-10-14 51蛋骗鸡1秒变动0-9按键控制并蜂鸣器响

缘由单片机程序设计与应用-Python-CSDN问答 #include "REG52.h" sbit K1 P3^0; sbit K2 P3^1; sbit K3 P3^2; sbit K4 P3^3; sbit bpP3^4; bit k1,wk0; unsigned char code SmZiFu[]{63,6,91,79,102,109,125,7,127,111,128,255,64};//0-9.消隐- unsigned char J…

【深度学习: 计算机视觉】如何改进计算机视觉数据集

【深度学习: 计算机视觉】如何改进计算机视觉数据集 训练模型并评估性能确定数据集需要改进的原因和位置收集或创建新的图像或视频数据重新训练机器学习模型并重新评估,直到达到所需的性能标准 机器学习算法需要大量数据集来训练、提高性能并生成组织所需…

基于SpringBoot+Vue的高校在线答疑管理系统

末尾获取源码作者介绍:大家好,我是墨韵,本人4年开发经验,专注定制项目开发 更多项目:CSDN主页YAML墨韵 学如逆水行舟,不进则退。学习如赶路,不能慢一步。 目录 一、项目简介 二、开发技术与环…

springwebflux高性能服务

场景: 分别使用springwebmvc 使用tomcat (tomcat 9)和springwebflux 做一个简单的接口 ,该接口返回一个随机数 压测环境: 4C 8G ECS 使用tomcat 压测结果 Max 抖动的厉害 保持压测的参数不变 使用webflux 压测结果 …

Power Designer的使用 创建数据库表模型

几年前用过PowerDesigner,好几年没用,有点忘记了,在这里记个笔记,需要的时候翻一翻 PowerDesigner版本16.5 下面的例子是以MySQL数据库为准 生成C#实体类 一 安装 1.1 安装 不让放网盘链接,审核通不过。。。。 …

react 之 zustand

zustand可以说是redux的平替 官网地址:https://zustand-demo.pmnd.rs/ 1.安装 npm i zustand2.基础使用 // zustand import { create } from zustand// 1. 创建store // 语法容易出错 // 1. 函数参数必须返回一个对象 对象内部编写状态数据和方法 // 2. set是用来…

Maven高级知识——分模块开发、继承与聚合

目录 一、分模块设计与开发 1.1 不分模块的问题 1.2 分模块设计 二、 继承与聚合 2.1 继承 2.1.1 继承关系 2.1.2 版本锁定 2.1.2.1 场景 2.1.2.2 介绍 2.1.2.3 实现 2.1.2.4 属性配置 2.2 聚合 2.2.1 介绍 2.2.2 实现 2.3 继承与聚合对比 三、Maven打包方式(jar、w…

应对手机数据丢失的5大安卓数据恢复软件

我们都去过那里。您的手机上的数据丢失了,现在无法恢复。这尤其令人恐惧,因为我们的手机上都有如此多的信息。从图片、应用程序、个人信息,甚至是来自可能已不复存在的亲人的短信和语音邮件。这种情况确实发生了,而且也不仅仅是An…

Leetcode—382. 链表随机节点【中等】(水塘抽样法)

2024每日刷题(一零九) Leetcode—382. 链表随机节点 算法思想 我们可以在初始化时,用一个数组记录链表中的所有元素,这样随机选择链表的一个节点,就变成在数组中随机选择一个元素 实现代码 /*** Definition for si…

STM32--USART串口(1)串口协议

一、通信接口 全双工:通信双方能够同时进行双向通信; 半双工:通信双方能够进行双向通信,但不能同时通信; 单工:只能从一个设备到另一个设备; 同步:接收方可以在时钟信号的指引下进…

线性代数:矩阵的秩

目录 一、矩阵的子式 二、矩阵的秩 三、重要性质定理推论 一、矩阵的子式 二、矩阵的秩 三、重要性质定理推论

031-安全开发-JS应用WebPack打包器第三方库JQuery安装使用安全检测

031-安全开发-JS应用&WebPack打包器&第三方库JQuery&安装使用&安全检测 #知识点: 1、三方库-JQuery-使用&安全 2、打包器-WebPack-使用&安全 演示案例: ➢打包器-WebPack-使用&安全 ➢第三方库-JQuery-使用&安全 #为什么…

dubbo+sentinel最简集成实例

说明 在集成seata后,下面来集成sentinel进行服务链路追踪管理~ 背景 sample-front网关服务已配置好 集成 一、启动sentinel.jar 1、官网下载 选择1:在本地启动 nohup java -Dserver.port8082 -Dcsp.sentinel.dashboard.serverlocalhost:8082 -Dp…