例题:
分析:
题目要求函数get和put要达到O(1)的时间复杂度,可以用 hashMap 来实现,因为要满足逐出最久未使用的元素的一个效果,还需要配合一个双向链表来共同实现。链表中的节点为一组key-value。
我们可以用双向链表来储存数据(key-value),当调用put方法添加数据时,可以将数据(key-value)添加到双向链表的队头,队头的元素表示最新使用的元素,越靠近队尾,就是最久未用的元素。
当调用get方法时,若存在此元素,则从双向链表中把该组数据(key-value)提到队头来。
代码实现:
package leetcode;import java.util.HashMap;public class LRUCacheLeetcode146 {static class LRUCache {static class Node{Node next;Node prev;int key;int value;public Node(){}public Node(int key, int value) {this.key = key;this.value = value;}}static class DoublyLinkedList{Node head;Node tail;public DoublyLinkedList() {head = tail = new Node();head.next = tail;tail.prev = head;}//头部添加 head<->1<->2<->tail 假如添加3public void addFirst(Node newNode){Node oldFirst = head.next;oldFirst.prev = newNode;head.next = newNode;newNode.prev = head;newNode.next = oldFirst;}//已知节点删除 head<->1<->2<->tail 假如删除2public void remove(Node node){Node prev = node.prev;Node next = node.next;prev.next = next;next.prev = prev;}//尾部删除public Node removeLast(){Node last = tail.prev;remove(last);return last;}}private final HashMap<Integer, Node> map = new HashMap<>();private final DoublyLinkedList list = new DoublyLinkedList();private final int capacity;public LRUCache(int capacity) {this.capacity = capacity;}public int get(int key) {if(!map.containsKey(key)){return -1;}Node node = map.get(key);//hash表中存在该数据,改组数据应放到队头//先从中删除原始数据list.remove(node);//再将改组数据添加到队头list.addFirst(node);return node.value;}public void put(int key, int value) {if(map.containsKey(key)){ //更新Node node = map.get(key);node.value = value;list.remove(node);list.addFirst(node);}else{ //添加Node newNode = new Node(key, value);map.put(key, newNode);list.addFirst(newNode);if(map.size() > capacity){Node removed = list.removeLast();//删除hash表中的数据map.remove(removed.key);}}}}public static void main(String[] args) {LRUCache cache = new LRUCache(2);cache.put(1, 1);cache.put(2, 2);System.out.println(cache.get(1)); // 1cache.put(3, 3);System.out.println(cache.get(2)); // -1cache.put(4, 4);System.out.println(cache.get(1)); // -1System.out.println(cache.get(3)); // 3}
}