【Tomcat与网络5】再论Tomcat的工作过程与两种经典的设计模式

前面两篇,我们重点分析了Tomcat的容器和连接器的基本设计,今天我们来看一下两个机构如何在service的调度下进行协同工作的。

目录

1.模板模式与Tomcat的重用性设计

2.观察者模式与Tomcat可扩展性设计


1.模板模式与Tomcat的重用性设计

首先,我们将前两篇的结构放在一起就是这样的:

从图中可以看到各种组件的层次关系,图中的虚线表示一个请求在 Tomcat 中流转的过程。

上面这张图描述了组件之间的静态关系,如果想让一个系统能够对外提供服务,我们需要创建、组装并启动这些组件;在服务停止的时候,我们还需要释放资源,销毁这些组件,因此这是一个动态的过程。也就是说,Tomcat 需要动态地管理这些组件的生命周期。

在我们实际的工作中,如果你需要设计一个比较大的系统或者框架时,你同样也需要考虑这几个问题:如何统一管理组件的创建、初始化、启动、停止和销毁?如何做到代码逻辑清晰?如何方便地添加或者删除组件?如何做到组件启动和停止不遗漏、不重复?

今天我们就来解决上面的问题,在这之前,先来看看组件之间的关系。如果你仔细分析过这些组件,可以发现它们具有两层关系。

  • 第一层关系是组件有大有小,大组件管理小组件,比如 Server 管理 Service,Service 又管理连接器和容器。

  • 第二层关系是组件有外有内,外层组件控制内层组件,比如连接器是外层组件,负责对外交流,外层组件调用内层组件完成业务功能。也就是说,请求的处理过程是由外层组件来驱动的。

这两层关系决定了系统在创建组件时应该遵循一定的顺序。

  • 第一个原则是先创建子组件,再创建父组件,子组件需要被“注入”到父组件中。

  • 第二个原则是先创建内层组件,再创建外层组件,内层组建需要被“注入”到外层组件。

因此,最直观的做法就是将图上所有的组件按照先小后大、先内后外的顺序创建出来,然后组装在一起。不知道你注意到没有,这个思路其实很有问题!因为这样不仅会造成代码逻辑混乱和组件遗漏,而且也不利于后期的功能扩展。

为了解决这个问题,我们希望找到一种通用的、统一的方法来管理组件的生命周期,就像电脑的“一键启动”那样的效果。

这个工作就是由LifeCycle 接口来统一定义的,设计就是要找到系统的变化点和不变点。这里的不变点就是每个组件都要经历创建、初始化、启动这几个过程,这些状态以及状态的转化是不变的。而变化点是每个具体组件的初始化方法,也就是启动方法是不一样的。

因此,我们把不变点抽象出来成为一个接口,这个接口跟生命周期有关,叫作 LifeCycle。LifeCycle 接口里应该定义这么几个方法:init()、start()、stop() 和 destroy(),每个具体的组件去实现这些方法。

理所当然,在父组件的 init() 方法里需要创建子组件并调用子组件的 init() 方法。同样,在父组件的 start() 方法里也需要调用子组件的 start() 方法,因此调用者可以无差别的调用各组件的 init() 方法和 start() 方法,这就是组合模式的使用,并且只要调用最顶层组件,也就是 Server 组件的 init() 和 start() 方法,整个 Tomcat 就被启动起来了。下图就是 LifeCycle 接口的定义。

有了接口,我们就要用类去实现接口。一般来说实现类不止一个,不同的类在实现接口时往往会有一些相同的逻辑,如果让各个子类都去实现一遍,就会有重复代码。那子类如何重用这部分逻辑呢?其实就是定义一个基类来实现共同的逻辑,然后让各个子类去继承它,就达到了重用的目的。

而基类中往往会定义一些抽象方法,所谓的抽象方法就是说基类不会去实现这些方法,而是调用这些方法来实现骨架逻辑。抽象方法是留给各个子类去实现的,并且子类必须实现,否则无法实例化。

比如宝马和荣威的底盘和骨架其实是一样的,只是发动机和内饰等配套是不一样的。底盘和骨架就是基类,宝马和荣威就是子类。仅仅有底盘和骨架还不是一辆真正意义上的车,只能算是半成品,因此在底盘和骨架上会留出一些安装接口,比如安装发动机的接口、安装座椅的接口,这些就是抽象方法。宝马或者荣威上安装的发动机和座椅是不一样的,也就是具体子类对抽象方法有不同的实现。

回到 LifeCycle 接口,Tomcat 定义一个基类 LifeCycleBase 来实现 LifeCycle 接口,把一些公共的逻辑放到基类中去,比如生命状态的转变与维护、生命事件的触发以及监听器的添加和删除等,而子类就负责实现自己的初始化、启动和停止等方法。为了避免跟基类中的方法同名,我们把具体子类的实现方法改个名字,在后面加上 Internal,叫 initInternal()、startInternal() 等。我们再来看引入了基类 LifeCycleBase 后的类图:

在上面的方法中,我们可以看到有两个方法是增加和删除Listener的,这个是做什么的呢?简单来说是为了提高系统的扩展性的。

从图上可以看到,LifeCycleBase 实现了 LifeCycle 接口中所有的方法,还定义了相应的抽象方法交给具体子类去实现,这是典型的模板设计模式

我们还是看一看代码,加深理解,下面是 LifeCycleBase 的 init() 方法实现。

@Override
public final synchronized void init() throws LifecycleException {//1. 状态检查if (!state.equals(LifecycleState.NEW)) {invalidTransition(Lifecycle.BEFORE_INIT_EVENT);}try {//2. 触发 INITIALIZING 事件的监听器setStateInternal(LifecycleState.INITIALIZING, null, false);//3. 调用具体子类的初始化方法initInternal();//4. 触发 INITIALIZED 事件的监听器setStateInternal(LifecycleState.INITIALIZED, null, false);} catch (Throwable t) {...}

这个方法逻辑比较清楚,主要完成了四步:

第一步,检查状态的合法性,比如当前状态必须是 NEW 然后才能进行初始化。

第二步,触发 INITIALIZING 事件的监听器

setStateInternal(LifecycleState.INITIALIZING, null, false);

在这个 setStateInternal 方法里,会调用监听器的业务方法。监听的问题我们稍后再看。

第三步,调用具体子类实现的抽象方法 initInternal() 方法。我在前面提到过,为了实现一键式启动,具体组件在实现 initInternal() 方法时,又会调用它的子组件的 init() 方法。

第四步,子组件初始化后,触发 INITIALIZED 事件的监听器,相应监听器的业务方法就会被调用。

setStateInternal(LifecycleState.INITIALIZED, null, false);

​​​​​​​2.观察者模式与Tomcat可扩展性设计

因为各个组件 init() 和 start() 方法的具体实现是复杂多变的,比如在 Host 容器的启动方法里需要扫描 webapps 目录下的 Web 应用,创建相应的 Context 容器,如果将来需要增加新的逻辑,直接修改 start() 方法?这样会违反开闭原则,那如何解决这个问题呢?开闭原则说的是为了扩展系统的功能,你不能直接修改系统中已有的类,但是你可以定义新的类。

我们注意到,组件的 init() 和 start() 调用是由它的父组件的状态变化触发的,上层组件的初始化会触发子组件的初始化,上层组件的启动会触发子组件的启动,因此我们把组件的生命周期定义成一个个状态,把状态的转变看作是一个事件。而事件是有监听器的,在监听器里可以实现一些逻辑,并且监听器也可以方便的添加和删除,这就是典型的观察者模式

具体来说就是在 LifeCycle 接口里加入两个方法:添加监听器和删除监听器。除此之外,我们还需要定义一个 Enum 来表示组件有哪些状态,以及处在什么状态会触发什么样的事件。因此 LifeCycle 接口和 LifeCycleState 就定义成了下面这样。

可以看到,组件的生命周期有 NEW、INITIALIZING、INITIALIZED、STARTING_PREP、STARTING、STARTED 等,而一旦组件到达相应的状态就触发相应的事件,比如 NEW 状态表示组件刚刚被实例化;而当 init() 方法被调用时,状态就变成 INITIALIZING 状态,这个时候,就会触发 BEFORE_INIT_EVENT 事件,如果有监听器在监听这个事件,它的方法就会被调用。

总之,LifeCycleBase 调用了抽象方法来实现骨架逻辑。讲到这里,我们再来看前面的LifeCycle里的问题,LifeCycleBase 负责触发事件,并调用监听器的方法,那是什么时候、谁把监听器注册进来的呢?

分为两种情况:

  • Tomcat 自定义了一些监听器,这些监听器是父组件在创建子组件的过程中注册到子组件的。比如 MemoryLeakTrackingListener 监听器,用来检测 Context 容器中的内存泄漏,这个监听器是 Host 容器在创建 Context 容器时注册到 Context 中的。

  • 我们还可以在 server.xml 中定义自己的监听器,Tomcat 在启动时会解析 server.xml,创建监听器并注册到容器组件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/657464.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

油分离器的介绍

压缩机的排气中带有冷冻机油,这些冷冻机油如果随制冷剂蒸汽进入冷凝器、蒸发器后将 在传热表面形成油膜,从而影响换热效果。因此通常在压缩机与冷凝器之间装设油分离器,用 来分离制冷剂蒸汽中挟带的冷冻机油。在氟利昂制冷系统中,…

读AI3.0笔记10_读后总结与感想兼导读

1. 基本信息 AI 3.0 (美)梅拉妮米歇尔 著 四川科学技术出版社,2021年2月出版 1.1. 读薄率 书籍总字数355千字,笔记总字数33830字。 读薄率33830355000≈9.53% 1.2. 读厚方向 千脑智能 脑机穿越 未来呼啸而来 虚拟人 新机器人 如何创造可信的AI 新机器智…

sklearn 计算 tfidf 得到每个词分数

from sklearn.feature_extraction.text import TfidfVectorizer# 语料库 可以换为其它同样形式的单词 corpus [list(range(-5, 5)),list(range(-6,4)),list(range(12)),list(range(13))]# corpus [ # [Two, wrongs, don\t, make, a, right, .], # [The, pen, is, might…

CGAL5.4.1 边塌陷算法

目录 1、使用曲面网格的示例 2、使用默认多面体的示例 3、使用丰富多面体的示例 主要对1、使用曲面网格的示例 进行深度研究 CGAL编译与安装CGAL安装到验证到深入_cgal测试代码-CSDN博客 参考资料CGAL 5.4.5 - Triangulated Surface Mesh Simplification: User Manual …

云原生 k8s 可能使用到的端口整理【不定期更新】

k8s 因为涉及到的组件太多了,所以端口有很多,这里整理了日常所接触的接口,后续有新的再更新。 如果是通过公网 IP 进行安装的时候需要根据实际情况有选择的进行放开;一般只有云厂商会提供公网 IP 访问,自建的话不建议 …

通过WSL2来实现Windows10/11的深度学习模型GPU加速,TensorFlow项,Jupyter及其插件安装,CQF心得,金融量化

通过WSL2来实现TF的GPU加速 为什么要用WSL(Windows Subsystem Linux)安装WSL2,miniconda,cuda,cudnn,TA-Lib安装 WSL2安装 Miniconda3安装 CUDA安装 cuDNN安装 TensorFlow 库安装 TA-Lib 库安装其它CQF及金…

Inventor 2024下载安装教程,免费使用,附安装包和工具,流程简单,小白也能轻松搞定

前言 Inventor是一款专业的三维可视化实体建模软件,Inventor.主要用于各类二维机械制图、三维制图的设计和开发等操作,可以广泛地应用于零件设计、钣金设计、装配设计等领域。 准备工作 1、Win7及以上系统 2、提前准备好 Inventor 2024 安装包 没有…

【操作系统】知识补漏

进程之间的关系: 1.独立 2.交互关系 2.1 竞争关系----互斥锁【解决】 2.2 协作关系----信号量【解决】 Linux调度策略的过程 linux 分为两个模型: 1 Normal 模式 sched_other[RR] 2. real-time 模式 real -time模式的进程优先级永远高于Normal模型 查…

2401Idea用GradleKotlin编译Java控制台中文出乱码解决

解决方法 解决方法1 在项目 build.gradle.kts 文件中加入 tasks.withType<JavaCompile> {options.encoding "UTF-8" } tasks.withType<JavaExec> {systemProperty("file.encoding", "utf-8") }经测试, 只加 tasks.withType<…

正则表达式(RE)

什么是正则表达式 正则表达式&#xff0c;又称规则表达式&#xff08;Regular Expression&#xff09;。正则表达式通常被用来检索、替换那些符合某个规则的文本 正则表达式的作用 验证数据的有效性替换文本内容从字符串中提取子字符串 匹配单个字符 字符功能.匹配任意1个…

0130-2-秋招面试—HTML篇

2023 HTML面试题 1.src和href的区别 scr用于替换当前元素&#xff0c;href用于在当前文档和外部资源之间建立联系。 <script src"main.js"></script><link href"style.css" rel"stylesheet" />2.对HTML语义化的理解 根据内…

数列极限一基础篇-重点习题记录

海涅定理与函数连续 首先证明函数在X0处连续&#xff1a; X 利用归结原则&#xff08;海涅定理&#xff09;证明函数 在x&#xff01;0处不连续&#xff1a; 收获&#xff1a; 数列极限单调有界应用 题1 题2 题3

华为---STP(二)---STP报文和STP端口状态

目录 1. STP报文简介 1.1 Configuration BPDU 1.2 TCN BPDU 2. STP交换机端口状态 2.1 STP交换机端口状态表 2.2 STP交换机端口状态迁移过程图 2.3 STP交换机端口状态变化举例说明 3 引起的STP网络拓扑改变的示例 3.1 根桥出现故障 3.2 有阻塞端口的交换机根端口所在…

[嵌入式系统-6]:龙芯1B 开发学习套件 -3-软件层次架构

目录 一、龙芯软件架构 1.1 通用软件架构 1.2 龙芯软件架构 1.3 龙芯各种应用程序 1.4 龙芯SOC芯片硬件&#xff1a;龙芯1B 1.5 PMON软件 1.6 龙芯IDE管辖的软件 &#xff08;1&#xff09;CPU Core驱动程序 &#xff08;2&#xff09;SOC芯片外设驱动程序 &#xff…

Linux(CentOS7)与用户电脑传输文件(sz与rz)云与云(scp)

rz和sz是Linux/Unix同Windows进行Zmodem文件传输的命令工具 rz和sz中的z为Zmodem文件传输协议的首字母 s为send发送 r为receive接收&#xff0c;都是相对与Linux来看的接收和发送 Linux发送文件到电脑&#xff1a; sz命令 把文件发送到Windows sz 文件直接按回车就可以选择发送…

数据结构:大顶堆、小顶堆

堆是其中一种非常重要且实用的数据结构。堆可以用于实现优先队列&#xff0c;进行堆排序&#xff0c;以及解决各种与查找和排序相关的问题。本文将深入探讨两种常见的堆结构&#xff1a;大顶堆和小顶堆&#xff0c;并通过 C 语言展示如何实现和使用它们。 一、定义 堆是一种完…

利用操作符解题的精彩瞬间

下面是链接为了解释练习2的并且还有与操作符相关的知识。 C语言与操作符相关的经典例题-CSDN博客 操作符详解&#xff08;上&#xff09;-CSDN博客 操作符详解&#xff08;下&#xff09;-CSDN博客 目录 练习1&#xff1a;在一个整型数组中&#xff0c;只有一个数字出现一…

Vue学习笔记(二)快速入门

Vue学习笔记&#xff08;二&#xff09;快速入门 vue小试牛刀 hello-vue3.html <body><div id"app"><h1>{{msg}}</h1></div><script type"module">import {createApp} from https://unpkg.com/vue3/dist/vue.esm-b…

超强的AI写简历软件

你们在制作简历时&#xff0c;是不是基本只关注两件事&#xff1a;简历模板&#xff0c;还有基本信息的填写。 当你再次坐下来更新你的简历时&#xff0c;可能会发现自己不自觉地选择了那个“看起来最好看的模板”&#xff0c;填写基本信息&#xff0c;却没有深入思考如何使简历…

Opencv——图片卷积

图像滤波是尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。 线性滤波是图像处理最基本的方法,它允许我们对图像进行处理,产生很多不同的效果。首先,我们需要一个二…