DolphinScheduler + Amazon EMR Serverless 的集成实践

0a0d770ddf11e58ffd2cabfee44402c3.gif

01

背景

Apache DolphinScheduler 是一个分布式的可视化 DAG 工作流任务调度开源系统,具有简单易用、高可靠、高扩展性、⽀持丰富的使用场景、提供多租户模式等特性。适用于企业级场景,提供了一个可视化操作任务、工作流和全生命周期数据处理过程的解决方案。

随着企业规模的扩大,业务数据的激增,以及 Apache DolphinScheduler 产品的完善、社区的日益火爆,越来越多的 EMR 客户,使用其进行集群任务的日常调度。相关安装、集成实践,本文不做详述,可以参考博客《使用 DolphinScheduler 进行 EMR 任务调度》。

  • 使用 DolphinScheduler 进行 EMR 任务调度

    https://aws.amazon.com/cn/blogs/china/emr-task-scheduling-with-dolphinscheduler/

Amazon EMR Serverless 是 EMR 中的无服务器选项,数据分析师和工程师可借助其轻松运行开源大数据分析框架(例如 Apache Spark 和 Apache Hive ),而无需配置、管理和扩展集群或服务器,使得数据工程师和分析师能够进一步聚焦业务价值的创造,最终实现降本增效。因此,越来越多的客户,开始尝试从 EMR on EC2 切换到 EMR Serverless,或者说从 DolphinScheduler + EMR 切换到 DolphinScheduler + EMR Serverless。

但在实践过程中,如下问题往往成为了拦路虎:

  • 异步执行:在使用 EMR on Amazon EC2 + DolphinScheduler 时,很多客户选择 beeline、PyHive 或者 Spark-Submit 的方式,让任务提交后同步执行,以便调度引擎的正常工作与进度的监控。但 EMR Serverless 仅支持任务提交后的异步执行,这对于使用 DolphinScheduler 的客户来讲是很难接受的。

  • 日志获取:切换到 EMR Serverless 后,获取任务日志的方式也发生了变化。由于任务的异步执行,导致在 DolphinScheduler 提交任务后,往往需要到 EMR Serverless 的 Job 列表页面查看日志,影响工作效率。

  • 混合调度:很多客户经过实际评估后,往往需要将一部分任务放到 EMR on EC2 上运行,将另一部分任务放到 EMR Serverless,以达到最佳的性价比。但两类群集的任务执行与监控方式区别较大,将两种任务放到调度系统中混合调度的维护成本比较高。

  • 任务形态:客户实际案例中,有的任务是执行一段 SQL 语句,有的任务是执行一个 Spark 脚本文件。但在 EMR Serverless 中默认仅支持提交脚本文件,无形中又给客户多设置了一道使用障碍。

02

解决方案

整体介绍与示例

本文将以 Python 语言提交 Spark 任务为例,探索针对上述问题的解决方案。如下图所示,通过封装一个 Python 类库,将 EMR On EC2 与 EMR Serverless 两种形态下的 Spark 任务提交、执行与监控细节进行抽象,面向 DolphinScheduler 提供统一的接口来进行调用,简化用户使用 EMR Serverless 的门槛。

804448a65cb117fc1dccb8263bf832e9.png

我们先通过代码演示如何使用封装的 Python 类库提交 Spark 任务,代码示例如下。其中 emr_common.Session 是抽象出来的 Python 类。

from emr_common import Session
#jobtype=0时,表示 EMR On EC2。可以手动设置集群 ID, 若不设置则默认会获取活动集群中的第 1 个。
session_emr=Session(jobtype=0)
#提交 SQL 语句,执行过程中,会持续打印状态并在任务完成时,打印日志
session_emr.submit_sql("sql-task","SELECT * FROM xxtable LIMIT 10"
#提交脚本文件,spark-test.py 是一个 pysark 或者 pyspark.sql 的程序脚本,执行过程中,会持续打印状态并在任务完成时,打印日志
session_emr.submit_file("script-task","spark-test.py")#jobtype=1 时,表示 EMR Serverless。可以手动设置应用 ID,若不设置则默认会获取 spark 应用程序中的第 1 个。
session_emrserverless=Session(jobtype=1,logs_s3_path='s3://xxx/xx')
#提交 SQL 语句,执行过程中,会持续打印状态并在任务完成时,打印日志
session_emrserverless.submit_sql("sql-task","SELECT * FROM xxtable LIMIT 10")
#提交脚本文件,spark-test.py 是一个 pysark 或者 pyspark.sql 的程序脚本,执行过程中,会持续打印状态并在任务完成时,打印日志
session_emrserverless.submit_file("script-task","spark-test.py")

原理 & 细节阐述

整体的类结构设计,采用的是面向对象的代理模式。面向客户使用的类是 Session 类,在 Session 类的构造函数中,会根据传入 jobtype 字段值来进一步构建内部类:EMRSession 或者 EMRServerlessSession。而真正的 Spark 任务提交、监控、日志查询逻辑则是封装在 EMRSession 或者 EMRServerlessSession 的对应方法中。

9300b896afbd905336bba34e16e8e1a5.png

EMRSession 的实现逻辑

  • 当调用 submit_sql(jobname,sql) 方法来提交任务,则会先读取 sql_template.py 文件,使用参数 sql 来替换文件中的${query}占位符,并生成一个临时文件上传至 Amazon S3;若是通过 submit_file(jobname,file) 方法来提交任务,则需要提前将脚本文件通过 DolphinScheduler 的资源中心进行上传,DolphinScheduler 后台会将文件上传至 S3 的指定目录。

  • 当脚本文件上传至 S3 后,再通过 EMR Steps 中的 add_job_flow_steps 命令来远程提交 Spark 任务。这里有两点需要指出:若设置了 Python 虚拟环境,则在提交 Spark 任务时,会在 dd_job_flow_steps 命令的 spark-submit 配置部分设置相关参数来使用这个虚拟环境;同时也会使用默认的或者用户自定义的 spark_conf 参数来设置 spark 的 driver、executor 配置参数。

  • 在任务执行过程中,会每隔 10 秒获取一次任务状态,并打印至控制台。在失败状态时失败时,会到约定的 S3 路径上获取 Driver 的 stderr 与 stdout 日志文件。

EMRServerless 的实现逻辑

原理与 EMRSession 大同小异,只是各步骤具体的接口调用不同。

  • 若调用 submit_sql(jobname,sql) 方法来提交任务,则会先读取 sql_template.py 文件,使用参数 sql 来替换文件中的${query}占位符,并生成一个临时文件上传至 S3;若是通过 submit_file(jobname,file) 方法来提交任务,则需要提前将脚本文件通过 DolphinScheduler 的资源中心进行上传,DolphinScheduler 后台会将文件上传至 S3 的指定目录。

  • 当脚本文件上传至 S3 后,再通过 start_job_run 命令来远程提交 Spark 任务。这里有两点需要指出:若设置了 Python 虚拟环境,则在提交 Spark 任务时,会在 start_job_run 中 spark-submit 配置中设置相关参数来使用这个虚拟环境;同时也会使用默认的或者用户自定义的 spark_conf 参数来设置 Spark 的 driver、executor 配置参数。

  • 在任务执行过程中,会每隔 10 秒获取一次任务状态,并打印至控制台。在失败状态时失败时,会到约定的 S3 路径上获取 Driver 的 stderr 与 stdout 日志文件。

接下来,我们通过时序图来表示 submit_sql(jobname,sql) 的调用逻辑,如下图所示:

022ff562180d2619d4b623a51083840e.png

完整代码

下面将展示完整的代码。其中,Session 类构造函数的参数,大多设置了默认值,以减少调用时的反复设置。在实际使用时,需根据真实场景来替换这些参数的默认值。接下来,将逐一解释 Session 类构造函数的每个参数。

  • application_id:若是 serverless,则设置应用程序的 ID; 若是 emr on ec2,则设置集群 ID;若不设置,则自动其第一个 active 的 app 或者 cluster 的 ID

  • jobtype:0: EMR on EC2;1: serverless;默认值为 0

  • job_role:EMR On EC2 的集群角色或者 EMRServerless 的 Job 角色。考虑到两者都需要 S3、Glue 等服务的访问权限,可以统一使用一个角色

  • dolphin_s3_path:DolphinScheduler 中配置的用于存储文件的 S3 路径。在 DolphinScheduler 中调度的 Python 任务代码中,可以直接通过相对路径引用其它 python 文件

  • logs_s3_path:对于 EMR on EC2 来说,就是集群级别的保存日志的 S3 路径;对于 EMR Serverless 来讲是 Job 级别的保存日志的 S3 路径,但通常可以统一使用一个路径

  • tempfile_s3_path:类库中会创建一些临时文件并保存在 S3 上

  • python_venv_s3_path:有的客户在编写 pyspark 时,还会引用一些其它的 Python 库。这时就需要准备一个 Python 虚拟环境,提前预置各类所需要的 Python 第三方库,并将虚拟环境打包并上传至 S3

  • spark_conf:这将会是一个常用的参数,用于设置 spark 的 driver 与 executor 的相关参数

import gzip
import os
from string import Template
import time
import boto3
from datetime import datetime
class EMRResult:def __init__(self,job_run_id,status):self.job_run_id=job_run_idself.status=status
class Session:def __init__(self,application_id='', #若是 serverless,则设置 应用的 ID; 若是emr on ec2,则设置集群 ID;若不设置,则自动其第一个active的 app 或者clusterjobtype=0, #0:EMR on EC2; 1: serverless  job_role='arn:aws:iam::******:role/AmazonEMR-ExecutionRole-1694412227712',dolphin_s3_path='s3://*****/dolphinscheduler/ec2-user/resources/',logs_s3_path='s3://aws-logs-****-ap-southeast-1/elasticmapreduce/',tempfile_s3_path='s3://****/tmp/',python_venv_s3_path='s3://****/python/pyspark_venv.tar.gz',spark_conf='--conf spark.executor.cores=4 --conf spark.executor.memory=16g --conf spark.driver.cores=4 --conf spark.driver.memory=16g'):self.jobtype=jobtypeself.application_id = application_idself.region='ap-southeast-1'self.job_role = job_roleself.dolphin_s3_path = dolphin_s3_pathself.logs_s3_path=logs_s3_pathself.tempfile_s3_path=tempfile_s3_pathself.spark_conf=spark_confself.python_venv_s3_path=python_venv_s3_pathself.client = boto3.client('emr', region_name=self.region)self.client_serverless = boto3.client('emr-serverless', region_name=self.region)#如果未设置application_id,则查询当前第一个 active 的 EMR 集群/或者 EMR Serverless 应用的 IDif self.application_id == '':self.application_id=self.getDefaultApplicaitonId()if jobtype == 0 :  #EMR on EC2self.session=EmrSession(region=self.region,application_id=self.application_id,job_role=self.job_role,dolphin_s3_path=self.dolphin_s3_path,logs_s3_path=self.logs_s3_path,tempfile_s3_path=self.tempfile_s3_path,python_venv_s3_path=self.python_venv_s3_path,spark_conf=self.spark_conf)elif jobtype ==1 : #EMR Serverlessself.session=EmrServerlessSession(region=self.region,application_id=self.application_id,job_role=self.job_role,dolphin_s3_path=self.dolphin_s3_path,logs_s3_path=self.logs_s3_path,tempfile_s3_path=self.tempfile_s3_path,python_venv_s3_path=self.python_venv_s3_path,spark_conf=self.spark_conf)else: #Pyhive ,used on-premiseself.session=PyHiveSession(host_ip="172.31.25.171",port=10000)self.initTemplateSQLFile()def submit_sql(self,jobname, sql):result= self.session.submit_sql(jobname,sql)if result.status == "FAILED" :raise Exception("ERROR:任务失败")def submit_file(self,jobname, filename):result=  self.session.submit_file(jobname,filename)if result.status == "FAILED":raise Exception("ERROR:任务失败")def getDefaultApplicaitonId(self):if self.jobtype == 0: #EMR on EC2emr_clusters = self.client.list_clusters(ClusterStates=['STARTING', 'BOOTSTRAPPING', 'RUNNING', 'WAITING'])if emr_clusters['Clusters']:app_id= emr_clusters['Clusters'][0]['Id']print(f"选择默认的集群(或EMR Serverless 的应用程序)ID:{app_id}")return app_idelse:raise Exception("没有找到活跃的EMR集群")elif self.jobtype == 1: #EMR Serverlessemr_applications = self.client_serverless.list_applications()spark_applications = [app for app in emr_applications['applications'] if app['type'] == 'Spark']if spark_applications:app_id = spark_applications[0]['id']print(f"选择默认的应用ID:{app_id}")return app_idelse:raise Exception("没有找到活跃的 EMR Serverless 应用")def initTemplateSQLFile(self):with open('sql_template.py', 'w') as f:f.write('''
from pyspark.sql import SparkSessionspark = (SparkSession.builder.enableHiveSupport().appName("Python Spark SQL basic example").getOrCreate()
)df = spark.sql("$query")
df.show()''')
class EmrSession:def __init__(self,region,application_id,  #若是EMR on EC2,则设置集群 ID;若不设置,则自动其第一个active的 app 或者clusterjob_role,dolphin_s3_path,logs_s3_path,tempfile_s3_path,python_venv_s3_path,spark_conf):self.s3_client = boto3.client("s3")self.region=regionself.client = boto3.client('emr', region_name=self.region)self.application_id = application_idself.job_role = job_roleself.dolphin_s3_path = dolphin_s3_pathself.logs_s3_path=logs_s3_pathself.tempfile_s3_path=tempfile_s3_pathself.python_venv_s3_path=python_venv_s3_pathself.spark_conf=spark_confself.client.modify_cluster(ClusterId=self.application_id,StepConcurrencyLevel=256)def submit_sql(self,jobname, sql):# temporary file for the sql parameterprint(f"RUN SQL:{sql}")self.python_venv_conf=''with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "sql_template.py")) as f:query_file = Template(f.read()).substitute(query=sql.replace('"', '\\"'))script_bucket = self.tempfile_s3_path.split('/')[2]script_key = '/'.join(self.tempfile_s3_path.split('/')[3:])current_time = datetime.now().strftime("%Y%m%d%H%M%S")script_key = script_key+"sql_template_"+current_time+".py"self.s3_client.put_object(Body=query_file, Bucket=script_bucket, Key=script_key)script_file=f"s3://{script_bucket}/{script_key}"result= self._submit_job_emr(jobname, script_file)self.s3_client.delete_object(Bucket=script_bucket, Key=script_key)return resultdef submit_file(self,jobname, filename):# temporary file for the sql parameterprint(f"Run File :{filename}")self.python_venv_conf=''if self.python_venv_s3_path and self.python_venv_s3_path != '':self.python_venv_conf = f"--conf spark.yarn.dist.archives={self.python_venv_s3_path}#environment --conf spark.yarn.appMasterEnv.PYSPARK_DRIVER_PYTHON=./environment/bin/python --conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./environment/bin/python --conf spark.executorEnv.PYSPARK_PYTHON=./environment/bin/python"script_file=f"{self.dolphin_s3_path}{filename}"result= self._submit_job_emr(jobname, script_file)return resultdef _submit_job_emr(self, jobname, script_file):spark_conf_args = self.spark_conf.split()#设置虚拟环境的地址,用于支持 pyspark 以外的库python_venv_args=[]if self.python_venv_conf and self.python_venv_conf != '':python_venv_args=self.python_venv_conf.split()jobconfig=[{'Name': f"{jobname}",'ActionOnFailure': 'CONTINUE','HadoopJarStep': {'Jar': 'command-runner.jar','Args': ['spark-submit','--deploy-mode','cluster','--master','yarn','--conf','spark.yarn.submit.waitAppCompletion=true'] + spark_conf_args + python_venv_args + [script_file]}}]response = self.client.add_job_flow_steps(JobFlowId=self.application_id,Steps=jobconfig)print(jobconfig)if response['ResponseMetadata']['HTTPStatusCode'] != 200:print('task failed:')print(response)job_run_id = response['StepIds'][0]print(f"Submit job on EMR ,job id: {job_run_id}")job_done = Falsestatus='PENDING'while not job_done:status = self.get_job_run(job_run_id)print(f"current status:{status}")job_done = status in ["SUCCESS","FAILED","CANCELLING","CANCELLED","COMPLETED"]time.sleep(10)if status == "FAILED":self.print_driver_log(job_run_id,log_type="stderr")self.print_driver_log(job_run_id,log_type="stdout")return EMRResult(job_run_id,status)def get_job_run(self, job_run_id: str) -> dict:step_status = self.client.describe_step(ClusterId=self.application_id,StepId=job_run_id)['Step']['Status']['State']return step_status.upper()def print_driver_log(self, job_run_id: str, log_type: str = "stderr") -> str:print("starting download the driver logs")s3_client = boto3.client("s3")logs_location = f"{self.logs_s3_path}{self.application_id}/steps/{job_run_id}/{log_type}.gz"logs_bucket = logs_location.split('/')[2]logs_key = '/'.join(logs_location.split('/')[3:])print(f"Fetching {log_type} from {logs_location}")try:#日志生成需要一段时间,最长 100 秒for _ in range(10):try:s3_client.head_object(Bucket=logs_bucket, Key=logs_key)breakexcept Exception:print("等待日志生成中...")time.sleep(10)response = s3_client.get_object(Bucket=logs_bucket, Key=logs_key)file_content = gzip.decompress(response["Body"].read()).decode("utf-8")except s3_client.exceptions.NoSuchKey:file_content = ""print( f"等待超时,请稍后到 EMR 集群的步骤中查看错误日志或者手动前往: {logs_location} 下载")print(file_content)class EmrServerlessSession:def __init__(self,region,application_id, #若是 serverless, 则设置 应用的 ID;若不设置,则自动其第一个active的 app job_role,dolphin_s3_path,logs_s3_path,tempfile_s3_path,python_venv_s3_path,spark_conf):self.s3_client = boto3.client("s3")self.region=regionself.client = boto3.client('emr-serverless', region_name=self.region)self.application_id = application_idself.job_role = job_roleself.dolphin_s3_path = dolphin_s3_pathself.logs_s3_path=logs_s3_pathself.tempfile_s3_path=tempfile_s3_pathself.python_venv_s3_path=python_venv_s3_pathself.spark_conf=spark_confdef submit_sql(self,jobname, sql): #serverless# temporary file for the sql parameterprint(f"RUN SQL:{sql}")self.python_venv_conf=''with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "sql_template.py")) as f:query_file = Template(f.read()).substitute(query=sql.replace('"', '\\"'))script_bucket = self.tempfile_s3_path.split('/')[2]script_key = '/'.join(self.tempfile_s3_path.split('/')[3:])current_time = datetime.now().strftime("%Y%m%d%H%M%S")script_key = script_key+"sql_template_"+current_time+".py"self.s3_client.put_object(Body=query_file, Bucket=script_bucket, Key=script_key)script_file=f"s3://{script_bucket}/{script_key}"result= self._submit_job_emr(jobname, script_file)#delete the temp fileself.s3_client.delete_object(Bucket=script_bucket, Key=script_key)return resultdef submit_file(self,jobname, filename):  #serverless# temporary file for the sql parameterprint(f"RUN Script :{filename}")self.python_venv_conf=''if self.python_venv_s3_path and self.python_venv_s3_path != '':self.python_venv_conf = f"--conf spark.archives={self.python_venv_s3_path}#environment --conf spark.emr-serverless.driverEnv.PYSPARK_DRIVER_PYTHON=./environment/bin/python --conf spark.emr-serverless.driverEnv.PYSPARK_PYTHON=./environment/bin/python --conf spark.executorEnv.PYSPARK_PYTHON=./environment/bin/python"script_file=f"{self.dolphin_s3_path}{filename}"result= self._submit_job_emr(jobname, script_file)return resultdef _submit_job_emr(self, name, script_file):#serverlessjob_driver = {"sparkSubmit": {"entryPoint": f"{script_file}","sparkSubmitParameters": f"{self.spark_conf} --conf spark.hadoop.hive.metastore.client.factory.class=com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory {self.python_venv_conf}",}}print(f"job_driver:{job_driver}")response = self.client.start_job_run(applicationId=self.application_id,executionRoleArn=self.job_role,name=name,jobDriver=job_driver,configurationOverrides={"monitoringConfiguration": {"s3MonitoringConfiguration": {"logUri": self.logs_s3_path,}}},)job_run_id = response.get("jobRunId")print(f"Emr Serverless Job submitted, job id: {job_run_id}")job_done = Falsestatus="PENDING"while not job_done:status = self.get_job_run(job_run_id).get("state")print(f"current status:{status}")job_done = status in ["SUCCESS","FAILED","CANCELLING","CANCELLED",]time.sleep(10)if status == "FAILED":self.print_driver_log(job_run_id,log_type="stderr")self.print_driver_log(job_run_id,log_type="stdout")raise Exception(f"EMR Serverless job failed:{job_run_id}")return EMRResult(job_run_id,status)def get_job_run(self, job_run_id: str) -> dict:response = self.client.get_job_run(applicationId=self.application_id, jobRunId=job_run_id)return response.get("jobRun")def print_driver_log(self, job_run_id: str, log_type: str = "stderr") -> str:s3_client = boto3.client("s3")logs_location = f"{self.logs_s3_path}applications/{self.application_id}/jobs/{job_run_id}/SPARK_DRIVER/{log_type}.gz"logs_bucket = logs_location.split('/')[2]logs_key = '/'.join(logs_location.split('/')[3:])print(f"Fetching {log_type} from {logs_location}")try:response = s3_client.get_object(Bucket=logs_bucket, Key=logs_key)file_content = gzip.decompress(response["Body"].read()).decode("utf-8")except Exception:file_content = ""print(file_content)

在 DolphinScheduler 上的应用

经过以上类库抽象与封装后,在 DolphinScheduler 上使用该类库,可以简单且灵活的向 EMR on EC2 和 EMR Serverless 提交 Spark 任务。

首先,将上述代码上传至 DolphinScheduler 的资源中心,文件名为 “emr_common.py”,如下图所示。

4e9bec40029badb6fe42fbe23a6e6203.png

然后在工作流程中插入 Python节点,按照 Demo 代码示例,提交 Spark 任务。通过 Session 的构造函数参数 jobtype 来控制,是向 EMR on EC2 提交 Spark 任务,还是向 EMR Serverless 提交 Spark 任务。需要注意的是,填写完 Python 代码后,为了让节点中的 Python 代码能正确地引用类库 “emr_common.py”,一定要在节点的资源设置中添加 “emr_common.py”,如下两图所示(注:需要提前在 DolphinScheduler 的节点上安装 emr_common.py 所引用的第三方 Python 库)。

a30b31dc8f3bf7f940f19a1b91de4197.png

当任务执行结束后,如果出现错误,就可以在 DolphinScheduler 中直接查看日志,无需到 Yarn、Spark UI 或者 EMRServerless 的 Job 页面去下载与查看日志了,如下图所示。

b2ab36aa65222798cb24d2cb54e5ce88.png

03

总结

本文通过对 EMR on EC2 与 EMRServerless 中 Spark 任务的提交、监控、下载日志过程进行抽象并封装成 Python 类库,极大的简化了使用 Spark 的门槛,以及从 EMR on EC2 切换至 EMRServerless 的改造成本,优化了 EMRServerless+DolphinScheduler 的集成实践,消除了客户对于使用 EMRServerless 的一些疑惑以及担忧。最终帮助客户逐渐从集群运维的工作负担中解脱出来,更加专注于应用逻辑的开发与业务价值的创造。

本篇作者

5e3e2168ee44ed8740a12ab8caf5e1da.jpeg

张盼富

亚马逊云科技解决方案架构师,从业十三年,先后经过历云计算、供应链金融、电商等多个行业,担任过高级开发、架构师、产品经理、开发总监等多种角色,有丰富的大数据应用与数据治理经验。加入亚马逊云科技后,致力于通过大数据+AI 技术,帮助企业加速数字化转型。

ca4ee3aa1fc8a2dd75cd8ce0970424b6.jpeg

刘元元

亚马逊云科技解决方案架构师,负责基于亚马逊云科技的云计算方案架构设计、咨询、实施等工作。曾担任研发经理、架构师的岗位并拥有多年的互联网系统的架构设计、系统开发的经验,覆盖金融、文旅、交通等行业,在 SaaS 系统和 Serverless 领域有着丰富的经验。

6438213e5e9cdfe0ea6512ec85415cd1.jpeg

庄颖勤

亚马逊云科技解决方案架构师,负责基于亚马逊云科技的云计算方案架构设计、咨询、实施等工作。在 DevOps、CI/CD 和容器等领域拥有丰富的技术和支持经验,致力于帮助客户实现技术创新和业务发展。

f994fc86384780598536bea44b84696a.gif

星标不迷路,开发更极速!

关注后记得星标「亚马逊云开发者」

cfcd233b92ff3850f99394baf51d6f9e.gif

听说,点完下面4个按钮

就不会碰到bug了!

811391b96f8448ef743a97b8a7dfaedd.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/656689.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】std::variant

上一篇文章讲到了 union,union union存在很多问题,因此C17设计了一个新的variant替代原来的union。 union的问题 无法知道当前使用的类型是什么。而且union无法自动调用底层数据成员的析构函数。 这些使得一般只对一些“基本类型”使用union&#xf…

Redis 安装 redistimeseries.so(时间序列数据类型)教程

配置步骤 1.下载 redistimeseries.so 文件 2.在 redis.conf 中增加配置 loadmodule /home/chenjian/redis-lib/RedisTimeSeries/redistimeseries.so DUPLICATE_POLICY LAST3.重启 Redis 服务 4.连接客户端,测试 RedisTimeSeries 相关命令,下图表明 R…

Java玩转《啊哈算法》排序之快速排序

心无挂碍,无挂碍故,无有恐怖,远离颠倒梦想,究竟涅槃。 地图 引子代码地址快速排序核心代码优劣完整代码演示 课后习题 引子 搭嘎好!本人最近看的《啊哈算法》这本书写的确实不错,生动形象,在保…

安全耐用 一路稳行 极固轮胎3大系列产品重磅上市

临近年关,全国范围内雨雪天气多发,让极端天气环境下的行车安全再次成为热议话题。路面寒冷湿滑,交通事故频发,也让大家开始关注一个话题:如何确保汽车在湿滑路面上的安全系数?或者说,如果遭遇类…

如何让wordpress首页只显示某一篇文章全部内容?在您的主页显示选择

大多数WordPress站点首页默认都是显示最新发布的文章列表,不过有些站点比较特殊,只想显示某一篇文章的全部内容,那么应该怎么设置呢? 其实,WordPress后台 >> 设置 >> 阅读 >> 在“您的主页显示”中…

基于flask的个人博客项目从0到1

项目展示 首页 文章时间线页面 笔记页面 留言页面 关于页面 后台页面-文章管理 后台页面-笔记页面 后台页面-分类 后台管理-新增标签 后台管理-标签页面 后台管理-新增标签 后台管理-关于页面 2.项目详述 该博客开源地址点击跳转,该项目已部署上线,…

《HTML 简易速速上手小册》第8章:HTML 表单高级技术(2024 最新版)

文章目录 8.1 数据收集与处理8.1.1 基础知识8.1.2 案例 1:创建一个注册表单8.1.3 案例 2:创建一个调查问卷表单8.1.4 案例 3:创建一个动态添加输入字段的表单 8.2 定制化表单元素8.2.1 基础知识8.2.2 案例 1:创建一个带有定制选择…

【GAMES101】Lecture 12 阴影 Shadow Mapping

这里是光栅化的最后一部分,讲这个光栅化里面怎么实现这个阴影 实际上阴影就是光源看不到的地方但是是我们能看到的地方,那这个地方就应该有阴影,那具体怎么做呢,这个就叫做Shadow Mapping,分两步做 我们之前说过这个解…

Stable Diffusion系列(四):提示词规则与使用

文章目录 基础规则高级规则插件使用基于相机镜头增强提示词常用提示词总结奇特提示词珍藏 基础规则 所谓提示词,也就是文生图中的文,由连贯的英语单词或句子组成。其最基础的规则是: 不同提示词之间需要用英文逗号分隔,空格和换…

基于大数据的B站数据分析系统的设计与实现

摘要:随着B站(哔哩哔哩网)在国内视频分享平台的崛起,用户规模和数据量不断增加。为了更好地理解和利用这些海量的B站数据,设计并实现了一套基于Python的B站数据分析系统。该系统采用了layui作为前端框架、Flask作为后端…

mfc140.dll找不到了要怎么解决?教你多种修复mfc140.dll的方法

遭遇 mfc140.dll 文件缺失的状况时,首要任务是保持冷静,并深入理解问题所在,随后按照科学的方法来应对这一挑战。本篇文章概述了多种应对策略,从适合新手的基本步骤到针对有技术基础用户的高级方案,各种手段都能有效地…

linux系统查看占用cpu程序

目录 一:top 二: ps 三:perf 四:/proc/stat 五:pidstat 一:top 使用 top 命令:在终端中输入 top 命令,系统会显示当前正在运行的进程和它们的资源占用情况。默认情况下&#…

awk 文本处理工具三剑客

一、什么是awk 1.1 awk 基本概念 awk(语言): 读取一行处理一行 是一个功能强大的编辑工具,逐行读取输入文本,默认以空格或tab键作为分隔符作为分隔,并按模式或者条件执行编辑命令。而awk比较倾向于将一行…

【网络】:网络套接字(UDP)

网络套接字 一.网络字节序二.端口号三.socket1.常见的API2.封装UdpSocket 四.地址转换函数 网络通信的本质就是进程间通信。 一.网络字节序 我们已经知道,内存中的多字节数据相对于内存地址有大端和小端之分, 磁盘文件中的多字节数据相对于文件中的偏移地址也有大端小端之分,网…

UE5.1_常用节点说明(经常忘记怎么用?)(常改)

UE5.1_常用节点说明(经常忘记怎么用?)(常改) 1. Gate——门节点。只有当门是Open状态才会执行Exit后面的代码。 Open开门;Close关门;Toggle开门和关门交替。 2. 关于控制ArmLength即控制相机前…

vite+vue3+ts项目上线docker 配置反向代理API

这次重点的坑是反向代理。 1。项目中配置代理,为了跨域请求数据 项目根目录中新建vite.config.ts文件 在文件中添加配置代理 注意:其中 /api 和target 的地址后面没有 / 2。在项目根目录中新建Httprequest.ts文件,引入axios,并…

Kotlin快速入门系列8

Kotlin的泛型 与Java一样,Kotlin也提供泛型。泛型,即 "参数化类型",将类型参数化,可以用在类,接口,方法上。可以为类型安全提供保证,消除类型强转的烦恼。声明泛型类的格式如下&…

UDP/TCP协议特点

1.前置知识 定义应用层协议 1.确定客户端和服务端要传递哪些信息 2.约定传输格式 网络上传输的一般是二进制数据/字符串 结构化数据转二进制/字符串 称为序列化 反之称之为反序列化 下面就是传输层了 在TCP/IP协议中,我们以 目的端口,目的IP 源端口 源IP 协议号这样一个五…

202413读书笔记|《好好恋爱是件正经事》——希望我们的故事永远崭新得像刚刚开始,永远未完待续

202413读书笔记|《好好恋爱是件正经事》——希望我们的故事永远崭新得像刚刚开始,永远未完待续 明亮的色彩,小红和小绿,哲理又日常治愈的文字,明快的线条,丰富的背景色,星星点点的⭐️斑斓点缀。 是情侣的…

能替代微软AD的国产化方案,搭建自主可控的身份管理体系

随着国产化替代步伐加速,以及企业出于信息安全建设的需要,越来越多的企业和组织开始考虑将现有的微软 Active Directory(AD)替换为国产化的LDAP身份目录服务(也称统一身份认证和管理)系统。本文将介绍一种国…