【AI量化分析】小明在量化中使用交叉验证原理深度分析解读

进行交叉验证好处

提高模型的泛化能力:通过将数据集分成多个部分并使用其中的一部分数据进行模型训练,然后使用另一部分数据对模型进行测试,可以确保模型在未见过的数据上表现良好。这样可以降低模型过拟合或欠拟合的风险,提高模型的泛化能力。
最大化数据利用:在传统的机器学习流程中,通常将数据集分为训练集和测试集,训练集用于训练模型,而测试集用于评估模型的性能。这种方式可能会导致数据的浪费,因为测试集可能没有充分利用。通过交叉验证,每个样本都可以被用作训练集和验证集,从而更好地利用所有可用的数据。
稳定性和可重复性:由于交叉验证可以产生一致的结果,因此可以提高实验的稳定性和可重复性。在进行机器学习实验时,不同的数据划分可能导致不同的结果。通过交叉验证,可以消除这种随机性,得到更加稳定和可靠的结果。
参数选择:交叉验证还可以用于选择最佳的模型参数。例如,可以通过比较不同参数设置下的交叉验证结果,选择最优的参数。这种方法可以帮助我们找到在各种不同场景下都能表现良好的参数。
降低偏差:将数据集随机分成多个部分可以减少由单一数据划分带来的偏差。例如,如果数据集中的某些样本具有特殊的特征或分布,那么这些样本可能会对模型的训练产生影响。通过交叉验证,可以确保每个子集都有相似的分布,从而降低偏差。
总的来说,交叉验证是一种非常有效的机器学习方法,可以帮助我们提高模型的泛化能力、稳定性和可重复性,同时还可以用于选择最佳的模型参数。在进行机器学习实验时,建议使用交叉验证来获得更加准确和可靠的结果。

为什么说交叉验证是最好的分割数据的方法

根据目的和意图,对数据分割的方法有简单拆分,分层拆分,留出拆分,但是以上方法都不完美,最好的拆分方法是交叉验证拆分:将数据集分成k份,每次使用其中的k-1份数据进行训练,剩余的一份数据进行测试。这种方法的优点是能够充分利用数据,并且在每次迭代中都保留了一部分数据作为验证集,有助于调整模型参数和选择最佳模型。但需要注意的是,k的选择会影响模型的泛化能力,通常k值越大,模型的泛化能力越强。
以下是交叉验证的源码

from sklearn.model_selection import KFold
import pandas as pd# 读取数据
data = pd.read_csv('stock_data.csv')
X = data.drop('date', axis=1)  # 假设日期作为目标变量
y = data['date']# 定义交叉验证
kf = KFold(n_splits=5, shuffle=True, random_state=42)for train_index, test_index in kf.split(X):# 提取训练和测试数据X_train, X_test = X.iloc[train_index], X.iloc[test_index]y_train, y_test = y.iloc[train_index], y.iloc[test_index]# 在此处进行模型训练和评估等操作# ...

n_estimators 是个啥?

在机器学习和数据科学中,n_estimators 是一个常用于集成学习算法的参数,特别是在随机森林(Random Forest)和梯度提升机(Gradient Boosting)等算法中。这个参数表示在构建集成模型时所使用的基学习器的数量。

具体来说:

在随机森林中,n_estimators 指的是森林中决策树的数量。
在梯度提升机中,n_estimators 指的是模型中的弱学习器或基模型的数量。
为了获得更好的预测性能,通常建议使用足够多的基学习器来形成集成模型。然而,增加基学习器的数量并不总是带来性能提升,因为过拟合也可能发生。因此,选择一个合适的 n_estimators 值通常需要进行一些实验和交叉验证。

在随机森林中,除了 n_estimators 外,还有一个与之相关的参数叫做 max_depth,它限制了每棵树的最大深度。这些参数可以用来控制模型的复杂度和过拟合的风险。

交叉验证如何

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score# 读取数据
data = pd.read_csv('stock_data.csv')
X = data[['open', 'high', 'low', 'close']]
y = data['date']# 定义参数网格
param_grid = {'n_estimators': [100, 200, 300, 400, 500]}# 定义交叉验证和模型评估
kf = KFold(n_splits=5, shuffle=True, random_state=42)
score_func = lambda model, X, y: accuracy_score(y, model.predict(X))# 执行网格搜索
grid = GridSearchCV(RandomForestClassifier(), param_grid, cv=kf, scoring=score_func)
grid.fit(X, y)# 输出最佳参数和最高得分
print("Best parameters:", grid.best_params_)
print("Best score:", grid.best_score_)

在上述代码中,我们首先从数据集中读取特征和目标变量。然后,我们定义了一个参数网格param_grid,其中包含不同的n_estimators值。接下来,我们使用5折交叉验证KFold来划分数据集,并定义一个评估函数score_func,用于计算模型的准确率。然后,我们使用GridSearchCV执行网格搜索,传入我们的模型(RandomForestClassifier)、参数网格、交叉验证和评估函数。最后,我们打印出最佳参数和最高得分。

通过执行上述代码,我们可以找到最佳的n_estimators值,使得模型在交叉验证中获得最高的准确率。你可以根据实际情况调整参数网格中的其他超参数,以找到最佳的模型配置。

接近股市

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score, cross_validatedef regress_process(estimator, train_x, train_y_regress, test_x, test_y_regress):# 训练训练集数据estimator.fit(train_x, train_y_regress)# 使用训练好的模型预测测试集对应的ytest_y_prdict_regress = estimator.predict(test_x)# 绘制实际股价涨跌幅度plt.plot(test_y_regress.cumsum())# 绘制通过模型预测的股价涨跌幅度plt.plot(test_y_prdict_regress.cumsum())# 针对训练集数据做交叉验证scores = cross_val_score(estimator, train_x, train_y_regress, cv=10)# 打印交叉验证得分print('Cross-validation scores: ', scores)print('Mean cross-validation score: ', np.mean(scores))# 实例化随机森林回归对象estimator
estimator = RandomForestRegressor()
# 将回归模型对象、训练集x、训练集连续y值、测试集x、测试集连续y值传入
regress_process(estimator, train_x, train_y_regress, test_x, test_y_regress)

探索随机森林的神奇力量,掌握参数调整的魔法,让我们在金融领域中驾驭数据的海洋。使用交叉验证作为指南,让我们找到最佳的模型配置,为我们的预测之旅保驾护航。

在这里插入图片描述

现在,请闭上眼睛,想象一下你是一名勇敢的探险家,手持一把神奇的指南针,在数据的大陆上探索未知的领域。这个指南针就是交叉验证,它会指引你找到最佳的模型配置,帮助你战胜数据挑战。

当你遇到一个神秘的山洞时,不要害怕,打开你的指南针,让它指引你前行。你会发现,这个山洞里面隐藏着许多宝藏,这些宝藏就是不同的参数配置。有些宝藏会让你的模型熠熠生辉,有些则会让你的模型黯然失色。

通过交叉验证,你可以安全地探索这个山洞,找到属于你的最佳宝藏。你会发现,这个宝藏不仅仅是一组超参数,更是一种智慧和勇气的象征。

所以,现在拿起你的指南针,踏上你的数据探险之旅吧!让交叉验证成为你的得力助手,共同开启一段令人难忘的旅程。相信我,当你找到那颗最佳的超参数组合时,你会发现整个世界都在为你喝彩!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/656053.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt|QPushButton控件讲解

前提 按钮分为了四种状态:常态、聚焦、按下、禁用 前一段时间更新了MFC框架下CButton的自绘。因为MFC框架下的按钮限制性很高,所以只能由自绘实现各种风格,但是QT框架完美的解决了这个问题,我们只需要了解如何调用,就…

springboot 个人网盘系统 java web网盘文件分享系统 web在线云盘

springboot 个人网盘系统 java web网盘文件分享系统 web在线云盘 开发工具:Eclipse/idea Java开发环境:JDK8.0 Web服务器:Tomcate9.0。 数据库:MySQL数据库。 技术框架:Struts2SpringHibernate和JSP 有详细的源码&#xff0…

【机器学习前置知识】隐变量

隐变量又称潜变量,顾名思义就是隐藏着的随机变量,它不能通过观测来得到,或者说它产生的过程是不可观测的,然而它却可以在潜移默化中影响可观测变量。 我们用抛硬币为例来解释什么是隐变量。假设有 A 、 B 、 C A、B、C A、B、C …

十一、C++核心编程(1)内存分区模型

本阶段主要针对面向对象程技术做详细讲解,探讨C中的核心和精髓。 一、内存分区模型 1、C程序在执行时,将内存大方向划分为4个区域: 代码区:存放函数体的二进制代码,由操作系统进行管理的全局区:存放全局变量和静态变量以及常量…

qt5-入门

参考: qt学习指南 Qt5和Qt6的区别-CSDN博客 Qt 学习之路_w3cschool Qt教程,Qt5编程入门教程(非常详细) 本地环境: win10专业版,64位 技术选择 Qt5力推QML界面编程。QML类似HTML,可以借助CSS进…

【超详细教程】GPT-SoVITs从零开始训练声音克隆教程(主要以云端AutoDL部署为例)

目录 一、前言 二、GPT-SoVITs使用教程 2.1、Windows一键启动 2.2、AutoDL云端部署 2.3、人声伴奏分离 2.4、语音切割 2.5、打标训练数据 2.6、数据集预处理 2.7、训练音频数据 2.8、推理模型 三、总结 一、前言 近日,RVC变声器的创始人(GitH…

Linux——Ubuntu安装MySQL并设置远程登录

1、安装mysql8.0.35 1.更新包列表,首先,确保您的系统已更新到最新状态。运行以下命令来更新包列表和安装最新的软件包: sudo apt update sudo apt upgrade2.安装MySQL服务器:运行以下命令来安装MySQL服务器: sudo a…

方案:将vue项目放在SpringMVC中,并用tomcat访问

需要先将项目生成一次war包才能访问项目的webapp文件夹下的资源,否则tomcat的webapp文件夹下面不会生成对应资源文件夹就无法访问。 问题:目录如下: 今天我测试了一下将vue打包后,放入webapp下面访问,却发现vue项目无…

第九节HarmonyOS 常用基础组件13-TimePicker

1、描述 时间选择组件,根据指定参数创建选择器,支持选择小时以及分钟。默认以24小时的时间区间创建滑动选择器。 2、接口 TimePicker(options?: {selected?: Date}) 3、参数 selected - Date - 设置选中项的时间。默认是系统当前的时间。 4、属性…

面试题 02.07. 链表相交(力扣LeetCode)

文章目录 面试题 02.07. 链表相交题目描述解题思路c代码优化后c代码 面试题 02.07. 链表相交 题目描述 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。 图示两个链表在节点 c1 …

java代码中直接调用存储过程

开启数据库语句批处理 url: jdbc:mysql://192.168.0.xxx:3306/xxx?useSSLfalse&useUnicodetrue&characterEncodingutf-8&zeroDateTimeBehaviorCONVERT_TO_NULL&serverTimezoneUTC&allowMultiQueriestrue 重点: allowMultiQueriestrue mysql…

Linux CPU 负载说明

一、背景 工作中我们经常遇到CPU 负载高,CPU负载高意味着什么? CPU的负载是怎么计算的? top指令中的各个指标代表什么含义? 二、CPU 负载计算方法 在系统出现负载问题,通常会使用uptime和top确认负载,这两…

基于C#制作一个连连看小游戏

基于C#制作一个连连看小游戏,实现:难易度选择、关卡选择、倒计时进度条、得分计算、音效播放等功能。 目录 引言游戏规则开发环境准备游戏界面设计游戏逻辑实现图片加载与显示鼠标事件处理游戏优化与扩展添加关卡与难度选择说明</

备战蓝桥杯--数据结构及STL应用(基础)

今天轻松一点&#xff0c;讲一讲stl的基本操作吧&#xff01; 首先&#xff0c;让我们一起创建一个vector容器吧&#xff01; #include<bits/stdc.h> using namespace std; struct cocoack{ int coco,ck; } void solve(){vector<cocoack> x;for(int i0;i<5;i){…

Java链表(2)

&#x1f435;本篇文章将对双向链表进行讲解&#xff0c;模拟实现双向链表的常用方法 一、什么是双向链表 双向链表在指针域上相较于单链表&#xff0c;每一个节点多了一个指向前驱节点的引用prev以及多了指向最后一个节点的引用last&#xff1a; 二、双向链表的模拟实现 首先…

使用Docker安装Jenkins,并能够在该Jenkins中使用Docker

1. 构建Dockerfile 试错1 参考https://medium.com/manav503/how-to-build-docker-images-inside-a-jenkins-container-d59944102f30 按照文章里所介绍的&#xff0c;实现在Jenkins容器环境中依然能够调用Docker&#xff0c;需要做到以下几步 下载Jenkins镜像将环境中的docke…

项目解决方案:高清视频监控联网设计方案

目 录 一、客户需求 二、网络拓扑图 三、方案描述 四、服务器配置 五、方案优势 1. 多级控制 2. 平台可堆叠使用 3. 支持主流接入协议 4. 多种终端显示 5. 视频质量诊断 6. 客户端功能强大 7. 一机一档 一、客户需求 客户现场存在两个网络环境&#xff0c…

自动化测试CSS元素定位

1.1 CSS定位 1.1.1 绝对路径定位 目标 查找第一个文本为“猜猜看”的a标签 实现 CSS表达式 html>body>div>a[.”猜猜看”] python表达式 driver.find_element_by_css_selector(‘html>body>div>a[.”猜猜看”]’) 1.1.2 相对路径定位 目标 查找第…

【Tomcat与网络1】史前时代—没有Spring该如何写Web服务

在前面我们介绍了网络与Java相关的问题&#xff0c; 最近在调研的时候发现这块内容其实非常复杂&#xff0c;涉及的内容多而且零碎&#xff0c;想短时间梳理出整个体系是不太可能的&#xff0c;所以我们还是继续看Tomcat的问题&#xff0c;后面有网络的内容继续补充吧。 目录 …

MongoDB安装以及卸载

查询id&#xff1a; docker ps [rootlocalhost ~]# docker stop c7a8c4ac9346 c7a8c4ac9346 [rootlocalhost ~]# docker rm c7a8c4ac9346 c7a8c4ac9346 [rootlocalhost ~]# docker rmi mongo sudo docker pull mongo:4.4 sudo docker images 卸载旧的 sudo docker stop mong…