JVM系列——垃圾收集器

对象存活判断

在这里插入图片描述

引用计数法

在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。

可达性分析算法

通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(ReferenceChain),如果某个对象到 GC Roots 间没有任何引用链相连,或者用图论的话来说就是从 GC Roots 到这个对象不可达时,则证明此对象是不可能再被使用的

其中固定可作为 GC Roots 的对象如下:

  • 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。
  • 在方法区中类静态属性引用的对象,譬如 Java 类的引用类型静态变量。
  • 在方法区中常量引用的对象,譬如字符串常量池(String Table)里的引用。
  • 在本地方法栈中 JNI(即通常所说的 Native 方法)引用的对象。
  • Java 虚拟机内部的引用,如基本数据类型对应的 Class 对象,一些常驻的异常对象(比如 NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器
  • 所有被同步锁(synchronized 关键字)持有的对象
  • 反映 Java 虚拟机内部情况的 JMXBean、JVMTI 中注册的回调、本地代码缓存等
  • 其他对象“临时性”地加入

对象引用

在这里插入图片描述

  • 强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。

  • 软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在 JDK 1.2 版之后提供了SoftReference 类来实现软引用。

  • 弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在 JDK 1.2 版之后提供了WeakReference 类来实现弱引用

  • 虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在 JDK 1.2 版之后提供了 PhantomReference 类来实现虚引用

垃圾收集算法

在这里插入图片描述

标记-清除算法

算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。

标记-复制算法

它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

标记-整理算法

标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。

垃圾收集器

在这里插入图片描述

Serial 收集器

一个单线程工作的收集器,但它的“单线程”的意义并不仅仅是说明它只会使用一个处理器或一条收集线程去完成垃圾收集工作,更重要的是强调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束。

ParNew 收集器

是 Serial 收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为包括 Serial 收集器可用的所有控制参数

Parallel Scavenge 收集器

基于标记-复制算法实现的收集器,也是能够并行收集的多线程收集器。目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是处理器用于运行用户
代码的时间与处理器总消耗时间的比值。
Parallel Scavenge 收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis 参数以及直接设置吞吐量大小的-XX:GCTimeRatio 参数,自适应调节策略也是 Parallel Scavenge 收集器区别于 ParNew 收集器的一个重要特性。

  • -XX:MaxGCPauseMillis 参数允许的值是一个大于 0 的毫秒数,收集器将尽力保证内存回收花费的时间不超过用户设定值。
  • -XX:GCTimeRatio 参数的值则应当是一个大于 0 小于 100 的整数,也就是垃圾收集时间占总时间的比率,相当于吞吐量的倒数。
  • -XX:+UseAdaptiveSizePolicy 开关参数,开启后不需要人工指定新生代的大小(-Xmn)、Eden 与 Survivor 区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数

Serial Old 收集器

Serial Old 是 Serial 收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法

Parallel Old 收集器

Parallel Old 是 Parallel Scavenge 收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。

CMS 收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。
CMS 收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:
初始标记(CMS initial mark)
并发标记(CMS concurrent mark)
重新标记(CMS remark)
并发清除(CMS concurrent sweep)
其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下 GC Roots 能直接关联到的对象,速度很快;并发标记阶段就是从 GC Roots 的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录

缺点

  • CMS 收集器对处理器资源非常敏感。CMS 默认启动的回收线程数是(处理器核心数量+3)/4。并发回收时垃圾收集线程只占用不超过 25%的处理器运算资源,并且会随着处理器核心数量的增加而下降。
  • CMS 收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的 Full GC 的产生。CMS 收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。参数-XX:CMSInitiatingOccu-pancyFraction 的值来提高 CMS 的触发百分比,降低内存回收频率,获取更好的性能。CMS 收集器的启动阈值就已经默认提升至 92%。要是 CMS 运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent Mode Failure),这时候虚拟机将不得不启动后备预案:冻结用户线程的执行,临时启用 Serial Old 收集器来重新进行老年代的垃圾收集,但这样停顿时间就很长了。所以参数-XX:CMSInitiatingOccupancyFraction 设置得太高将会很容易导致大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置
  • CMS 是一款基于“标记-清除”算法实现的收集器,容易产生大量内存碎片。
    -XX:+UseCMS-CompactAtFullCollection 开关参数,默认开启,用于在 CMS 收集器不得不进行 Full GC 时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在 Shenandoah 和 ZGC 出现前)是无法并发的。
    数-XX:CMSFullGCsBeforeCompaction(此参数从 JDK 9 开始废弃),这个参数的作用是要求 CMS 收集器在执行过若干次(数量由参数值决定)不整理空间的 Full GC 之后,下一次进入 Full GC 前会先进行碎片整理(默认值为 0,表示每次进入 Full GC 时都进行碎片整理)

G1收集器

JDK 8 Update 40 的时候,G1 提供并发的类卸载的支持,补全了其计划功能的最后一块拼图。这个版本以后的 G1 收集器才被Oracle 官方称为“全功能的垃圾收集器”。
G1 开创的基于 Region 的堆内存布局,把连续的 Java 堆划分为多个大小相等的独立区域(Region),每一个 Region 都可以根据需要,扮演新生代的 Eden 空间、Survivor 空间,或者老年代空间。收集器能够对扮演不同角色的 Region 采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。
Region 中还有一类特殊的 Humongous 区域,专门用来存储大对象。G1 认为只要大小超过了一个 Region 容量一半的对象即可判定为大对象。每个 Region 的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为 1MB~32MB,且应为 2 的 N 次幂。而对于那些超过了整个 Region 容量的超级大对象,将会被存放在 N 个连续的 Humongous Region之中,G1 的大多数行为都把 Humongous Region 作为老年代的一部分来进行看待。
垃圾回收过程主要是有以下几个步骤:

  • 初始标记(Initial Marking):仅仅只是标记一下 GC Roots 能直接关联到的对象,并且修改 TAMS 指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行 Minor GC 的时候同步完成的,所以 G1收集器在这个阶段实际并没有额外的停顿
  • 并发标记(Concurrent Marking):从 GC Root 开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理 SATB记录下的在并发时有引用变动的对象。
  • 最终标记(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的 SATB 记录。
  • 筛选回收(Live Data Counting and Evacuation):负责更新 Region 的统计数据,对各个 Region 的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region 构成回收集,然后把决定回收的那一部分 Region 的存活对象复制到空的 Region中,再清理掉整个旧 Region 的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。

JDK默认垃圾收集器演进

查看垃圾回收器信息

jmap -heap [pid]

jdk1.7 默认垃圾收集器Parallel Scavenge(新生代)+Parallel Old(老年代)
jdk1.8 默认垃圾收集器Parallel Scavenge(新生代)+Parallel Old(老年代)
jdk1.9 默认垃圾收集器G1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/653755.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot+微信小程序+vue实现的校园二手商城项目源码

介绍 校园二手商城,架构:springboot微信小程序vue 软件架构 软件架构说明 系统截图 技术选型 技术版本说明Spring Boot2.1.6MVC核心框架Spring Security oauth22.1.5认证和授权框架MyBatis3.5.0ORM框架MyBatisPlus3.1.0基于mybatis,使用…

蓝桥杯备战——8.DS1302时钟芯片

1.分析原理图 由上图可以看到,芯片的时钟引脚SCK接到了P17,数据输出输入引脚IO接到P23,复位引脚RST接到P13。 2.查阅DS1302芯片手册 具体细节还需自行翻阅手册,我只截出重点部分 总结:数据在上升沿写出,下降沿读入,…

QGIS使用地理配准将3857坐标系转成上海城建坐标

控制点格式 如 mapX mapY sourceX sourceY enable dX dY residual -58653 70641 13452659.39 3746386.025 1 0 0 0 -58653 65641 13452693.09 3740477.283 1 0 0 0 ......保存为.points格式 图层预处理 图层投影为3857坐标系 地理配准 1. 打开图层-地理配准 工具 2. 导入…

基于FX构建大型Golang应用

Uber开源的FX可以帮助Go应用解耦依赖,实现更好的代码复用。原文: How to build large Golang applications using FX 构建复杂的Go应用程序可能会引入很多耦合 Golang是一种流行编程语言,功能强大,但人们还是会发现在处理依赖关系的同时组织大…

sql注入第一关

判断注入点的类型 通常 Sql 注入漏洞分为 2 种类型: 数字型字符型 数字型测试 在参数后面加上单引号,比如: http://xxx/abc.php?id1 如果页面返回错误,则存在 Sql 注入。 原因是无论字符型还是整型都会因为单引号个数不匹配而报错。 如果未报错&…

Go语言中的HTTP代理处理机制

在当今的互联网世界,HTTP代理是一种常见的网络通信方式,用于保护用户的隐私、突破网络限制或提高网络访问速度。在Go语言中,代理处理机制的实现可以为开发者提供强大的网络通信能力。本文将深入探讨Go语言中的HTTP代理处理机制。 首先&#…

每日一道面试题:Java中序列化与反序列化

写在开头 哈喽大家好,在高铁上码字的感觉是真不爽啊,小桌板又拥挤,旁边的小朋友也比较的吵闹,影响思绪,但这丝毫不影响咱学习的劲头!哈哈哈,在这喧哗的车厢中,思考着这样的一个问题…

PrimeFaces修改默认加载动画

Background 默认加载动画不够醒目&#xff0c;我们可以在网上下载个好看的gif图&#xff0c;然后修改默认设置&#xff0c;具体步骤如下参考官方地址&#xff1a;https://www.primefaces.org/showcase/ui/ajax/status.xhtml 实现效果如下 xhtml源码 <p:ajaxStatus onstar…

【人工智能】八数码问题的A*搜索算法实现

一、实验要求 熟悉和掌握启发式搜索的定义、估价函数和算法过程&#xff0c;并利用A*算法求解八数码问题&#xff0c;理解求解流程和搜索顺序 二、实验原理 定义h*(n)为状态n到目的状态的最优路径的代价&#xff0c;则当A搜索算法的启发函数h(n)小于等于h* (n)&#xff0c;即满…

使用毫米波雷达传感器的功能安全兼容系统设计指南2(TI文档)

2.3 步骤3&#xff1a;平台选择 平台选择是设计生命周期中最关键的步骤之一。一旦从第二步完成了一个成熟的系统框图&#xff0c;重要的任务就是根据性能需求选择系统模块/子系统。TI广泛的毫米波雷达传感器产品组合可以帮助实现许多性能要求&#xff0c;如远程或中程、角度分辨…

GoogLeNet模型详解

模型介绍 GoogLeNet是谷歌工程师设计的深度神经网络结构&#xff0c;于2014年在ImageNet比赛中取得了冠军。它的设计特点在于既有深度&#xff0c;又在横向上拥有“宽度”&#xff0c;并采用了一种名为Inception的核心子网络结构。这个网络名字中的“GoogLeNet”是对LeNet的致…

Layui + Echarts 5.0

Layui 怎么整合最新版本的 Echarts 5.0&#xff0c;Echarts 4 升级到 5后&#xff0c;有了很大改变&#xff0c;新的配置项4是无法兼容的&#xff0c;所以想要使用新的功能&#xff0c;都需要升级&#xff01; 新建一个echarts.js文件 layui.define(function (exports) {// 这…

2023年算法OOA-CNN-BiLSTM-ATTENTION回归预测(matlab)

OOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测 Matlab语言。 鱼鹰优化算法&#xff08;Osprey optimization algorithm&#xff0c;OOA&#xff09;由Mohammad Dehghani 和 Pavel Trojovsk于2023年提出&#xff0c;其模拟鱼鹰的捕…

Nodejs前端学习Day5

苦其心志&#xff0c;劳其筋骨 文章目录 前言一、处理路径问题二、path路径模块总结 前言 继续fs 一、处理路径问题 在使用fs模块操作文件时&#xff0c;如果提供的操作路径是以./或…/开头的相对路径时&#xff0c;很容易出现路径动态拼接错误的问题 原因&#xff1a;代码在…

USB-C显示器:未来显示技术的革新者

随着科技的不断发展&#xff0c;显示技术也在不断进步&#xff0c;而USB-C显示器作为最新的显示技术&#xff0c;正在引领着显示行业的发展潮流。USB-C显示器具有许多优点&#xff0c;如高速传输、便捷连接、节能环保等&#xff0c;使其成为未来显示技术的革新者。 一、USB-C显…

【leetcode】01背包总结

01 背包 关键点 容器容量固定每件物品只有两种状态&#xff1a;不选、选 1 件求最大价值 代码 int N, W; // N件物品&#xff0c;容量为W int w[N], v[N]; // w为大小&#xff0c;v为容量/* 数组定义 */ int[][] dp new int[N][W 1]; // 注意是W 1, 因为重量会取到W dp[…

向日葵企业“云策略”升级 支持Android 被控策略设置

此前&#xff0c;贝锐向日葵推出了适配PC企业客户端的云策略功能&#xff0c;这一功能支持管理平台统一修改设备设置&#xff0c;上万设备实时下发实时生效&#xff0c;很好的解决了当远程控制方案部署后&#xff0c;想要灵活调整配置需要逐台手工操作的痛点&#xff0c;大幅提…

小型洗衣机哪个牌子好用又耐用?最好用的迷你洗衣机推荐

最近这两年在洗衣机中火出圈的内衣洗衣机&#xff0c;它不仅可以清洁我们较难清洗的衣物&#xff0c;自带除菌功能&#xff0c;可以让衣物上的细菌&#xff0c;还能在清洗的过程中呵护我们衣物的面料&#xff0c;虽然说它是内衣洗衣机&#xff0c;它的功能不止可以清洗内衣&…

精通Python第16篇—深入解析Pyecharts极坐标系参数与实战

文章目录 Pyecharts绘制多种炫酷极坐标系参数说明与方向的技术博客1. 导入必要的库2. 极坐标系基础3. 定制化极坐标系4. 方向性的极坐标系5. 极坐标系的动画效果6. 自定义极坐标轴标签7. 添加极坐标系的背景图8. 极坐标系的雷达图总结 Pyecharts绘制多种炫酷极坐标系参数说明与…

JVM系列——对象管理

JVM对象分布 对象头 第一类是用于存储对象自身的运行时数据&#xff0c;如哈希码&#xff08;HashCode&#xff09;、GC 分代年龄、锁状态标志、线程持有的锁、偏向线程 ID、偏向时间戳等 另外一部分是类型指针&#xff0c;即对象指向它的类型元数据的指针&#xff0c;Java 虚…