【并发编程】volatile原理

       📝个人主页:五敷有你      
 🔥系列专栏:并发编程
⛺️稳重求进,晒太阳

volatile原理实现是内存屏障,Memory Barrier

  • 对volatile变量的写指令会加入写屏障。
  • 对volatile变量的读指令会加入读屏障

如何保证可见性

写屏障(sfence)保证在该屏障之前的,对共享变量的改动,都同步到主存当中

不只是把volatile修改同步到主存中,还会把之前的一些修改同步到主存中

如下,就是在同步ready的时候也会同步num

public void actor2(I_Result r) {num = 2;//之后也会同步到主存中ready = true; // ready 是 volatile 赋值带写屏障// 写屏障}

而读屏障(lfence)保证在该屏障之后,对共享变量的读取,加载的是主存中最新数据

如下,就是从主存中读取到的值ready

public void actor1(I_Result r) {// 读屏障// ready 是 volatile 读取值带读屏障if(ready) {r.r1 = num + num;} else {r.r1 = 1;}}

下图理解 

如何保证有序性

1.写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后

如下:就是防止num的赋值操作走到ready=true的后面(防止前面的之前的语句没做,影响后续的结果)

public void actor2(I_Result r) {num = 2;ready = true; // ready 是 volatile 赋值带写屏障// 写屏障}

2.读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前

如下:读屏障是防止后面的赋值操作走到前面(走到前面的话会有概率影响你的volatile修饰的变量)

public void actor1(I_Result r) {// 读屏障// ready 是 volatile 读取值带读屏障if(ready) {r.r1 = num + num;} else {r.r1 = 1;}}

不能解决指令交错

  • 写屏障仅仅是保证之后的读能够读到最新的结果,但不能保证读跑到它前面去(不懂)。t2线程啥时候读不能保证
  • 而有序性的保证也只是保证了本线程内相关代码不被重排序。至于两个线程之间谁前谁后,这是由CPU决定的

double-checked locking问题

synchronized是可以保证原子有序,可见的,但前提是,需要把共享变量都交给synchronized管理

下面的代码就有外部暴漏的风险

public final class Singleton {private Singleton() { }private static Singleton INSTANCE = null;public static Singleton getInstance() {if(INSTANCE == null) { // t2// 首次访问会同步,而之后的使用没有 synchronizedsynchronized(Singleton.class) {if (INSTANCE == null) { // t1INSTANCE = new Singleton();}}}return INSTANCE;}
}

以上的实现特点是:

  • 懒惰实例化
  • 首次使用 getInstance() 才使用 synchronized 加锁,后续使用时无需加锁
  • 有隐含的,但很关键的一点:第一个 if 使用了 INSTANCE 变量,是在同步块之外

但在多线程环境下,上面的代码是有问题的,getInstance 方法对应的字节码为:

其中

17 表示创建对象,将对象引用入栈 // new Singleton

20 表示复制一份对象引用 // 引用地址

21 表示利用一个对象引用,调用构造方法

24 表示利用一个对象引用,赋值给 static INSTANCE

也许 jvm 会优化为:先执行 24,再执行 21。如果两个线程 t1,t2 按如下时间序列执行:

        关键在于 0: getstatic 这行代码在 monitor 控制之外,它就像之前举例中不守规则的人,可以越过 monitor 读取INSTANCE 变量的值

        这时 t1 还未完全将构造方法执行完毕,如果在构造方法中要执行很多初始化操作,那么 t2 拿到的是将是一个未初始化完毕的单例

        对 INSTANCE 使用 volatile 修饰即可,可以禁用指令重排(防止synchronized的部分指令跑到instance的前面去),但要注意在 JDK 5 以上的版本的 volatile 才会真正有效

double-checked locking 解决

public final class Singleton {private Singleton() { }private static volatile Singleton INSTANCE = null;public static Singleton getInstance() {// 实例没创建,才会进入内部的 synchronized代码块if (INSTANCE == null) {synchronized (Singleton.class) { // t2// 也许有其它线程已经创建实例,所以再判断一次if (INSTANCE == null) { // t1INSTANCE = new Singleton();}}}return INSTANCE;}
}

字节码上看不出来 volatile 指令的效果

// -------------------------------------> 加入对 INSTANCE 变量的读屏障

0: getstatic #2               // Field INSTANCE:Lcn/itcast/n5/Singleton;

3: ifnonnull 37

6: ldc #3 // class cn/itcast/n5/Singleton

8: dup

9: astore_0

10: monitorenter -----------------------> 保证原子性、可见性

11: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;

14: ifnonnull 27

17: new #3 // class cn/itcast/n5/Singleton

20: dup

21: invokespecial #4 // Method "":()V

24: putstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;

// -------------------------------------> 加入对 INSTANCE 变量的写屏障

27: aload_0

28: monitorexit ------------------------> 保证原子性、可见性

29: goto 37

32: astore_1

33: aload_0

34: monitorexit

35: aload_1

36: athrow

37: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;

        如上面的注释内容所示,读写 volatile 变量时会加入内存屏障(Memory Barrier(Memory Fence)),保证下面两点:

  • 可见性:
    • 写屏障(sfence)保证在该屏障之前的 t1 对共享变量的改动,都同步到主存当中
    • 而读屏障(lfence)保证在该屏障之后 t2 对共享变量的读取,加载的是主存中最新数据
  • 有序性
    • 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
    • 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
  • 更底层是读写变量时使用 lock 指令来多核 CPU 之间的可见性与有序性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/652958.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

响应式Web开发项目教程(HTML5+CSS3+Bootstrap)第2版 例5-2 JavaScript 获取HTML元素对象

代码 <!doctype html> <html> <head> <meta charset"utf-8"> <title>JavaScript 获取 HTML 元素对象</title> </head><body> <input type"text" value"admin" /> <br> <input …

【深度学习:t-SNE 】T 分布随机邻域嵌入

【深度学习&#xff1a;t-SNE 】T 分布随机邻域嵌入 降低数据维度的目标什么是PCA和t-SNE&#xff0c;两者有什么区别或相似之处&#xff1f;主成分分析&#xff08;PCA&#xff09;t-分布式随机邻域嵌入&#xff08;t-SNE&#xff09; 在 MNIST 数据集上实现 PCA 和 t-SNE结论…

数据中心代理IP:最优性价比业务应用指南

数据中心代理IP在应对高速高并发的业务时&#xff0c;以独特的高速传输&#xff0c;游刃有余地应对多任务处理&#xff0c;适合于特定业务场景的高效加速。理性选用数据中心代理IP&#xff0c;可以为业务将迎来更加稳健和迅速的发展。今天&#xff0c;我们将揭示数据中心代理IP…

Python代码耗时统计

time模块 在代码执行前后各记录一个时间点&#xff0c;两个时间戳相减即程序运行耗时。这种方式虽然简单&#xff0c;但使用起来比较麻烦。 time.time() 函数返回的时间是相对于1970年1月1日的秒数 import timestart time.time() time.sleep(1) end time.time() print(f&…

flutter 搜索框实现,键盘搜索按钮,清空,防抖

import package:flutter/material.dart; import package:flutter_screenutil/flutter_screenutil.dart; import package:flutter_svg/svg.dart; import package:sy_project/config/app_colors.dart; import package:sy_project/core/assets.dart;/// 搜索textview class Custom…

【MIdjourne基础】 |MIdjourney基础参数全解析,各类辅助知识

文章目录 1 参数列表1.1 基础参数列表 2 基础参数详解2.1 模型版本选择2.2 模型出图模式选择2.3 基础生图参数2.3.1 --ar2.3.2 --stylize2.3.3 --no2.3.4 --chaos2.3.5 --quality2.3.6 --stop2.3.7 --hd2.3.8 --repeat 1 参数列表 1.1 基础参数列表 模型版本选择 目标参数作…

杂项基础知识

换行与回车 ASCII中的CR与LF CR&#xff08;Carriage Return&#xff09;&#xff0c;回车字符\r&#xff0c;控制字符&#xff0c;将光标移动到本行行首 LF&#xff08;Line Feed&#xff09;&#xff0c;换行字符\n&#xff0c;控制字符&#xff0c;将光标下移一行 ASCII…

【2024美赛实战】预测模型:灰色预测模型GM(1,1)

当题目数据少且无明显规律的时候&#xff0c;且要求进行短期预测的时候&#xff0c;或许可以考虑另一种预测方法——灰色预测模型GM(1,1)&#xff0c;虽然是个比较基础的预测模型&#xff0c;但在美赛O奖论文中登场次数也是比较多的。 一 预测问题的一般步骤 二 灰色预测模型…

Redis客户端之Redisson(三)Redisson分布式锁

一、背景&#xff1a; 高效的分布式锁设计应该包含以下几个要点&#xff1a; 1、互斥&#xff1a; 在分布式高并发的条件下&#xff0c;我们最需要保证&#xff0c;同一时刻只能有一个线程获得锁&#xff0c;这是最基本的一点 2、防止死锁&#xff1a; 在分布式高并发的条…

Cesium材质特效

文章目录 0.引言1.视频材质2.分辨率尺度3.云4.雾5.动态水面6.雷达扫描7.流动线8.电子围栏9.粒子烟花10.粒子火焰11.粒子天气 0.引言 现有的gis开发方向较流行的是webgis开发&#xff0c;其中Cesium是一款开源的WebGIS库&#xff0c;主要用于实时地球和空间数据的可视化和分析。…

动态规划算法题刷题笔记

首先看动态规划的三要素&#xff1a;重叠子问题、最优子结构和状态转移方程。 重叠子问题&#xff1a;存在大量的重复计算 最优子结构&#xff1a; 状态转移方程&#xff1a;当前状态转移成以前的状态 动态规划的解题步骤主要有&#xff1a; 确定 dp 数组以及下标的含义状…

苍穹外卖-前端部分(持续更新中)

d 第二种&#xff1a;cmd中输入 vue ui进入图形化界面选择npm,vue2进行创建 先将创建的Vue框架导入Vsocde开发工具 然后ctrshiftp 输入npm 点击serve将项目启动 下这种写法跨域会报错&#xff1a; 解决方法&#xff1a; \ 注意 这种用法&#xff1a;&#xff08;不是单引号…

Android Handler完全解读

一&#xff0c;概述 Handler在Android中比较基础&#xff0c;本文笔者将对此机制做一个完全解读。读者可简单参考上述类图与时序图&#xff0c;便于后续理解。 二&#xff0c;源码解读 1&#xff0c;主线程伊始 众所周知&#xff0c;通过Zygote的fork方式&#xff0c;新创建…

SSH客户端 Termius for Mac 中文激活版

Termius for Mac是一款强大的终端和SSH客户端&#xff0c;为开发人员、系统管理员和网络工程师提供了全面的远程访问和管理工具。 软件下载&#xff1a;Termius for Mac 中文激活版下载 无论您是在使用Mac、Windows还是Linux系统&#xff0c;Termius都能提供出色的功能和用户体…

静态代理IP该如何助力Facebook多账号注册运营?

在Facebook运营中&#xff0c;充分利用静态代理IP是多账号运营的关键一环。通过合理运用静态代理IP&#xff0c;不仅可以提高账号安全性&#xff0c;还能有效应对Facebook的算法和限制。以下是这些关键点&#xff0c;可以帮助你了解如何运用静态代理IP进行Facebook多账号运营&a…

基于springboo校园社团信息管理系统

摘要 随着高校规模的扩大和学生社团活动的日益丰富多彩&#xff0c;校园社团信息管理成为一个备受关注的问题。为了更有效地组织、管理和推动校园社团的发展&#xff0c;本文设计并实现了一套基于Spring Boot的校园社团信息管理系统。本系统以实现社团信息的集中管理和高效运营…

使用dockers-compose搭建开源监控和可视化工具

简介 Prometheus 和 Grafana 是两个常用的开源监控和可视化工具。 Prometheus 是一个用于存储和查询时间序列数据的系统。它提供了用于监控和报警的数据收集、存储、查询和图形化展示能力。Prometheus 使用拉模型&#xff08;pull model&#xff09;&#xff0c;通过 HTTP 协议…

工具学习——使用OpenSmile提取音频特征

文章目录 OpenSmile介绍下载和安装提取特征格式转换特征提取尝试一正常使用手段常见的特征 使用Gnuplot可视化特征安装使用 总结 OpenSmile介绍 openSMILE&#xff08;open-source Speech and Music Interpretation by Large-space Extraction&#xff09;是一个开源工具包&am…

直流电机驱动(马达)

文章目录 一、介绍直流电机介绍电机驱动电路大功率器件直接驱动H桥驱动集成电路线路图 PWM介绍产生PWM的方法 二、实例1.呼吸灯案例2.直流电机调速 一、介绍直流电机 介绍 电机驱动电路 点击的负载较大&#xff0c;直接接在单片机I/O口上无法驱动&#xff0c;所以需要驱动电路…

Vite学习指南

那本课程都适合哪些人群呢&#xff1f; 想要学习前端工程化&#xff0c;在新项目中投入使用 Vite 构建工具的朋友 Webpack 转战到 Vite 的小伙伴 前端架构师们&#xff0c;可以充实自己的工具箱 当然如果你没有项目相关开发经验&#xff0c;也可以从本课程中受益&#xff0…