TCP 异常断开连接【重点】

参考链接
https://xiaolincoding.com/network/3_tcp/tcp_down_and_crash.html
https://xiaolincoding.com/network/3_tcp/tcp_unplug_the_network_cable.html#%E6%8B%94%E6%8E%89%E7%BD%91%E7%BA%BF%E5%90%8E-%E6%9C%89%E6%95%B0%E6%8D%AE%E4%BC%A0%E8%BE%93

关键词:

  • 没有开启 keepalive
  • 一直没有数据交互;
  • 进程崩溃;
  • 主机崩溃

1. 先了解 TCP keepalive

请添加图片描述
在Linux中查询TCP保活时间的命令

sysctl -A | grep keep
  • 如果对端程序是正常工作的。当 TCP 保活的探测报文发送给对端, 对端会正常响应,这样 TCP 保活时间会被重置,等待下一个 TCP 保活时间的到来。
  • 如果对端主机崩溃,或对端由于其他原因导致报文不可达。当 TCP 保活的探测报文发送给对端后,石沉大海,没有响应,连续几次,达到保活探测次数后,TCP 会报告该 TCP 连接已经死亡。
    所以,TCP 保活机制可以在双方没有数据交互的情况,通过探测报文,来确定对方的 TCP 连接是否存活。(应用程序若想使用 TCP 保活机制需要通过 socket 接口设置 SO_KEEPALIVE 选项才能够生效,如果没有设置,那么就无法使用 TCP 保活机制。)

2. TCP 连接,客户端/服务端进程崩溃会发生什么?

结论:如果「客户端/服务端进程崩溃」,客户端/服务端的进程在发生崩溃的时候,操作系统是可以感知的到的,内核会发送 FIN 报文,与对方进行四次挥手。

  1. TCP 的连接信息是由内核维护的,所以当服务端或者客户端的进程崩溃后,内核需要回收该进程的所有 TCP 连接资源,于是内核会发送第一次挥手 FIN 报文,后续的挥手过程也都是在内核完成,并不需要进程的参与,所以即使客户端/服务端的进程退出了,还是能与对端完成 TCP四次挥手的过程。
  2. 所以,即使没有开启 TCP keepalive,且双方也没有数据交互的情况下,如果其中一方的进程发生了崩溃,这个过程操作系统是可以感知到的,于是就会发送 FIN 报文给对方,然后与对方进行 TCP 四次挥手。

3. TCP 连接,客户端主机崩溃会发生什么?

「主机宕机」,那么是不会发生四次挥手的,具体后续会发生什么?还要看服务端会不会发送数据?

1. 不管有没有开启TCP keepalive,只要有数据传输:

  • 如果服务端会发送数据,由于客户端已经不存在,收不到数据报文的响应报文,服务端的数据报文会超时重传,当重传总间隔时长达到一定阈值(内核会根据 tcp_retries2 设置的值计算出一个阈值)后,会断开 TCP 连接。

至于重传问题,参考链接
https://xiaolincoding.com/network/3_tcp/tcp_feature.html#%E9%87%8D%E4%BC%A0%E6%9C%BA%E5%88%B6
https://xiaolincoding.com/network/3_tcp/tcp_down_and_crash.html#%E5%AE%A2%E6%88%B7%E7%AB%AF%E4%B8%BB%E6%9C%BA%E5%AE%95%E6%9C%BA-%E4%B8%80%E7%9B%B4%E6%B2%A1%E6%9C%89%E9%87%8D%E5%90%AF

  • 在「有数据传输」的场景下的一些异常情况:

1.第一种,客户端主机宕机,又迅速重启,会发生什么?
在客户端主机宕机后,服务端向客户端发送的报文会得不到任何的响应,在一定时长后,服务端就会触发超时重传机制,重传未得到响应的报文。
服务端重传报文的过程中,客户端主机重启完成后,客户端的内核就会接收重传的报文,然后根据报文的信息传递给对应的进程:
如果客户端主机上没有进程绑定该 TCP 报文的目标端口号,那么客户端内核就会回复 RST 报文,重置该 TCP 连接;
如果客户端主机上有进程绑定该 TCP 报文的目标端口号,由于客户端主机重启后,之前的 TCP 连接的数据结构已经丢失了,客户端内核里协议栈会发现找不到该 TCP 连接的 socket 结构体,于是就会回复 RST 报文,重置该 TCP
连接。
所以,只要有一方重启完成后,收到之前 TCP 连接的报文,都会回复 RST 报文,以断开连接。

2.客户端主机宕机,一直没有重启,会发生什么?
服务端超时重传报文的次数达到一定阈值后,内核就会判定出该 TCP 有问题,然后通过 Socket 接口告诉应用程序该 TCP 连接出问题了,于是 服务端的 TCP 连接就会断开

2. 没有开启 TCP keepalive,且双方一直没有数据交互的情况下:

  • 客户端主机崩溃了,服务端是无法感知到的,在加上服务端没有开启 TCP keepalive,又没有数据交互的情况下,服务端的 TCP 连接将会一直处于 ESTABLISHED 连接状态,直到服务端重启进程
  • 所以,我们可以得知一个点,在没有使用 TCP 保活机制且双方不传输数据的情况下,一方的 TCP 连接处在 ESTABLISHED 状态,并不代表另一方的连接还一定正常。

3. 有开启TCP keepalive,服务端在一段时间没有进行数据交互时

  • 会触发 TCP keepalive 机制,探测对方是否存在,如果探测到对方已经消亡,则会断开自身的 TCP 连接

对于宕机,大概就是
有数据传输----->考虑到----->重传
有keepalive,无数据传输----->考虑到----->触发 TCP keepalive 机制
都没有----->考虑到----->一直处于 ESTABLISHED 连接状态


4. 拔掉网线后, 原本的 TCP 连接还存在吗?

实际上,TCP 连接在 Linux 内核中是一个名为 struct socket 的结构体,该结构体的内容包含 TCP 连接的状态等信息。当拔掉网线的时候,操作系统并不会变更该结构体的任何内容,所以 TCP 连接的状态也不会发生改变。

小林实验:在这里插入图片描述
自己之前在实践QUIC的连接迁移的时候,想将TCP作为对比,因此也做了类似的测试:将客户端的IP地址由IP1变为IP2,过一会又将地址变回 IP1,双方又可以发送数据。
客户端:
在这里插入图片描述
服务端tcpdump:
在这里插入图片描述
如果在服务端重传报文的过程中,客户端一直没有将IP地址变换为原来的IP1,则服务端超时重传报文的次数达到一定阈值后,内核会根据 tcp_retries2 设置的值,计算出一个 timeout(如果 tcp_retries2 =15,那么计算得到的 timeout = 924600 ms),如果重传间隔超过这个 timeout,则认为超过了阈值,就会停止重传,然后就会断开 TCP 连接。
在这里插入图片描述

1. 拔掉网线后,有数据传输

  • 在客户端拔掉网线后,服务端向客户端发送的数据报文会得不到任何的响应,在等待一定时长后,服务端就会触发超时重传机制,重传未得到响应的数据报文。
    如果在服务端重传报文的过程中,客户端刚好把网线插回去了,由于拔掉网线并不会改变客户端的 TCP 连接状态,并且还是处于 ESTABLISHED 状态,所以这时客户端是可以正常接收服务端发来的数据报文的,然后客户端就会回 ACK 响应报文。
    此时,客户端和服务端的 TCP 连接依然存在的,就感觉什么事情都没有发生。

  • 但是,如果在服务端重传报文的过程中,客户端一直没有将网线插回去,服务端超时重传报文的次数达到一定阈值后,内核就会判定出该 TCP 有问题,然后通过 Socket 接口告诉应用程序该 TCP 连接出问题了,于是服务端的 TCP 连接就会断开。
    而等客户端插回网线后,如果客户端向服务端发送了数据,由于服务端已经没有与客户端相同四元祖的 TCP 连接了,因此服务端内核就会回复 RST 报文,客户端收到后就会释放该 TCP 连接。
    此时,客户端和服务端的 TCP 连接都已经断开了。

2. 拔掉网线后,没有数据传输

  • 针对拔掉网线后,没有数据传输的场景,还得看是否开启了 TCP keepalive 机制 (TCP 保活机制)。

  • 如果没有开启 TCP keepalive 机制,在客户端拔掉网线后,并且双方都没有进行数据传输,那么客户端和服务端的 TCP 连接将会一直保持存在。

  • 而如果开启了 TCP keepalive 机制,在客户端拔掉网线后,即使双方都没有进行数据传输,在持续一段时间后,TCP 就会发送探测报文:
    如果对端是正常工作的。当 TCP 保活的探测报文发送给对端, 对端会正常响应,这样 TCP 保活时间会被重置,等待下一个 TCP 保活时间的到来。
    如果对端主机宕机(注意不是进程崩溃,进程崩溃后操作系统在回收进程资源的时候,会发送 FIN 报文,而主机宕机则是无法感知的,所以需要 TCP 保活机制来探测对方是不是发生了主机宕机),或对端由于其他原因导致报文不可达。当 TCP 保活的探测报文发送给对端后,石沉大海,没有响应,连续几次,达到保活探测次数后,TCP 会报告该 TCP 连接已经死亡。
    所以,TCP 保活机制可以在双方没有数据交互的情况,通过探测报文,来确定对方的 TCP 连接是否存活。


5. 网络中间节点异常(另一个因素)

参考链接
https://blog.csdn.net/hot__rain/article/details/48289381?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_baidulandingword~default-1-48289381-blog-111363089.235v40pc_relevant_anti_vip&spm=1001.2101.3001.4242.2&utm_relevant_index=4

在实际网络应用中,两个主机之间的通信往往需要穿越多个中间节点,例如路由器、网关、防火墙等。因此,两个主机之间 TCP 连接的保持同样会受到中间节点的影响,尤其是会受到防火墙(软件或硬件防火墙)的限制。防火墙是一种装置,有多种不同的实现方式(软件实现、硬件设备实现或是软硬件相结合实现),它需要依据一系列规则对进出的信息流进行扫描,并允许安全(符合规则)的信息交互、阻止不安全(违反规则)的信息交互。 防火墙的工作特性决定了要维护一个网络连接就需要耗费较多的资源,并且企业防火墙常常位于企业网络的出入口,长时间维护非活跃的 TCP 连接必将导致网络性能的下降。因此,大部分防火墙默认会关闭长时间处于非活跃状态的连接而导致 TCP 连接断连 。类似的,如果中间节点异常导致来自客户端关闭连接的请求无法传递到服务器端,也将导致服务器端的相应连接发生断连。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述


6. TCP keepalive 机制探测的时间太长(附加)

TCP keepalive 是 TCP 层(内核态) 实现的,它是给所有基于 TCP 传输协议的程序一个兜底的方案。

实际上,我们应用层可以自己实现一套探测机制,可以在较短的时间内,探测到对方是否存活。

比如,web 服务软件一般都会提供 keepalive_timeout 参数,用来指定 HTTP 长连接的超时时间。如果设置了 HTTP 长连接的超时时间是 60 秒,web 服务软件就会启动一个定时器,如果客户端在完后一个 HTTP 请求后,在 60 秒内都没有再发起新的请求,定时器的时间一到,就会触发回调函数来释放该连接。
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/652596.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无际线复选框

效果演示 实现了一个网格布局,其中每个网格是一个复选框,可以选择是否显示。每个复选框都有一个漂浮的天花板,表示它是一个房间的天花板。每个房间的天花板都有一个不同的形状和颜色,分别对应不同的房间。整个页面的背景是一个由两…

echarts多个折线图共用X轴,实现tooltip合并和分离

echarts共享X轴案例&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>Document</…

DevSecOps核心流程基本组成分析

目录 一、DevSecOps核心流程基本组成 1.1 核心流程概述 1.2 DevSecOps 核心流程说明 1.2.1 核心流程图 1.2.2 流程说明 1.2.2.1 持续开发 1.2.2.2 持续构建 1.2.2.3 持续运维 1.2.2.4 持续监控 二、DevSecOps核心流程经典场景 2.1 Azure DevSecOps核心流程 2.1.1 核…

HCIA-HarmonyOS设备开发认证-3.内核基础

目录 前言目标一、进程与线程待续。。。 前言 对于任何一个操作系统而言&#xff0c;内核的运行机制与原理是最为关键的部分。本章内容从多角度了解HarmonyOS的内核运行机制&#xff0c;涵盖进程与线程的概念&#xff0c;内存管理机制&#xff0c;网络特性&#xff0c;文件系统…

HTTP连接池在Java中的应用:轻松应对网络拥堵

网络拥堵是现代生活中无法避免的问题&#xff0c;尤其是在我们这个“点点点”时代&#xff0c;网页加载速度直接影响到我们的心情。此时&#xff0c;我们需要一位“救世主”——HTTP连接池。今天&#xff0c;就让我们一起探讨一下&#xff0c;这位“救世主”如何在Java中大显神…

Linux下安装openresty

Linux下安装openresty 十一、Linux下安装openresty11.1.概述11.2.下载OpenResty并安装相关依赖&#xff1a;11.3.使用wget下载:11.4.解压缩:11.5.进入OpenResty目录:11.6.编译和安装11.7.进入OpenResty的目录&#xff0c;找到nginx&#xff1a;11.8.在conf目录下的nginx.conf添…

C# 获取计算机信息

目录 一、本机信息 1、本机名 2、获得本机MAC地址 3、获得计算机名 4、显示器分辨率 5、主显示器分辨率 6、系统路径 二、操作系统信息 1、操作系统类型 2、获得操作系统位数 3、获得操作系统版本 三、处理器信息 1 、处理器个数 四、CPU信息 1、CPU的个数 2、…

【分布式技术专题】「探索高性能远程通信」基于Netty的分布式通信框架实现(附通信协议和代码)(上)

基于Netty的分布式通信框架实现 前提介绍回顾Dubbo分布式通信框架组成元素程序执行流程消息协议设计实现机制ChannelInboundHandlerAdapter自定义事件处理 ChannelOutboundHandlerAdapter 编(解)码处理器编码过程阶段ChannelOutboundHandlerAdapter序列化实现ChannelOutboundHa…

wireshark利用sshdump自身组件进行远程实时抓包过滤

引言 以前在不了解wireshark可以远程抓包的时间&#xff0c;经常通过tcpdump在远程linux主机将抓包文件保存下来后&#xff0c;然后拖拽入windows中再打开&#xff0c;进行分析查看。 此过程比较繁琐&#xff0c;也不够实时。比较常用的抓包动作是仅出现某特征的报文后&#…

数据结构与算法:复杂度

友友们大家好啊&#xff0c;今天开始正式学习数据结构与算法有关内容&#xff0c;后续不断更新数据结构有关知识内容&#xff0c;希望多多支持&#xff01; 数据结构&#xff1a; 数据结构是用于存储和组织数据的方式&#xff0c;以便可以有效地访问和修改数据。不同的数据结构…

1.23神经网络框架(sig函数),逆向参数调整法(梯度下降法,链式法则(理解,及处理多层神经网络的方式))

框架 输入层 隐藏层 存在一个阈值&#xff0c;如果低于某一阈值就不激活&#xff1b;高于了就激活 输出层 逆向参数调整方法 初始阶段&#xff0c;随机设置权重值w1,w2 依据训练集 两个数学方法 &#xff08;梯度下降、链式法则&#xff09; 调参借助两个数学方法 当导数为…

2024.1.27 GNSS 学习笔记

1.精确的描述轨道的一组数据(星历)是实现精确定位与导航的基础。 2.GNSS卫星广播星历的提供方式一般有两种&#xff1a;一种是提供开普勒轨道参数和必要的轨道摄动改正项参数&#xff0c;如GPS、BDS、Galileo三大系统采用此种模式&#xff0c;还有QZSS系统&#xff1b;另一种是…

Spring Cloud 之Config详解

大家好&#xff0c;我是升仔 在微服务架构中&#xff0c;统一的配置管理是维护大规模分布式系统的关键。Spring Cloud Config为微服务提供集中化的外部配置支持&#xff0c;它可以与各种源代码管理系统集成&#xff0c;如Git、SVN等。本文将详细介绍如何搭建配置服务器、管理客…

用ASM HEMT模型提取GaN器件的参数

标题&#xff1a;Physics-Based Multi-Bias RF Large-Signal GaNHEMT Modeling and Parameter Extraction Flow (JEDS 17年) 模型描述 该模型的核心是对表面势&#xff08;ψ&#xff09;及其随施加的栅极电压&#xff08;Vg&#xff09;和漏极电压&#xff08;Vd&#xff09…

C++ STL中list迭代器的实现

list 的模拟实现中&#xff0c;重难点在于迭代器功能的实现&#xff0c;因此本文只围绕 iterator 及 const_iterator 的设计进行介绍&#xff0c;其余如增删查改则不再赘述——在C语言的基础上&#xff0c;这些都非常简单。 与 string / vector 不同&#xff0c;list 的节点原生…

【时间安排】

最近刚刚回到家&#xff0c;到家就是会有各种事情干扰&#xff0c;心里变乱人变懒的&#xff0c;而要做的事情也要继续&#xff0c;写论文&#xff0c;改简历&#xff0c;学习新技能。。 明天后天两天写论文改简历 周一&#xff08;早上去城市书房&#xff0c;可能吵一点戴个耳…

【深度学习:开源BERT】 用于自然语言处理的最先进的预训练

【深度学习&#xff1a;开源BERT】 用于自然语言处理的最先进的预训练 是什么让 BERT 与众不同&#xff1f;双向性的优势使用云 TPU 进行训练BERT 结果让 BERT 为您所用 自然语言处理 &#xff08;NLP&#xff09; 面临的最大挑战之一是训练数据的短缺。由于 NLP 是一个具有许多…

C#学习(十一)——Array和Collection

一、集合 集合重要且常用 孤立的数据是没有意义的&#xff0c;集合可以作为大量数据的处理&#xff0c;可进行数据的搜索、迭代、添加、删除。 C#中&#xff0c;所有集合都必须实现ICollection接口&#xff08;数组Array除外&#xff09; 集合说明Array数组&#xff0c;固定长…

【GitHub项目推荐--基于 AI 的口语训练平台】【转载】

Polyglot Polyglot 是一个开源的基于 AI 的口语训练平台客户端&#xff0c;可以在 Windows、Mac 上使用。 比如你想练习英语口语&#xff0c;只需在该平台配置一个虚拟的 AI 国外好友&#xff0c;你可以通过发语音的方式和 AI 好友交流&#xff0c;通过聊天的方式提升你的口…

中仕教育:事业单位考试考什么?

事业单位考试分为两个阶段&#xff0c;分别是笔试和面试&#xff0c;考试科目包括公共科目和专业科目两部分。 公共科目内容是公共基础知识、职业能力测试或申论。一种形式为&#xff1a;公共基础知识职业能力测试或职业能力测试申论。另一种形式为&#xff1a;公共基础申论。…