LLM学习《Prompt Engineering for Developer》

Prompt

如何构造好的Prompt

  1. 分割符:分隔符就像是 Prompt 中的墙,将不同的指令、上下文、输入隔开,避免意外的混淆。你可以选择用 ```,“”",< >, ,: 等做分隔符,只要能明确起到隔断作用即可。
from tool import get_completiontext = f"""
您应该提供尽可能清晰、具体的指示,以表达您希望模型执行的任务。\
这将引导模型朝向所需的输出,并降低收到无关或不正确响应的可能性。\
不要将写清晰的提示词与写简短的提示词混淆。\
在许多情况下,更长的提示词可以为模型提供更多的清晰度和上下文信息,从而导致更详细和相关的输出。
"""
# 需要总结的文本内容
prompt = f"""
把用三个反引号括起来的文本总结成一句话。
```{text}```
"""
# 指令内容,使用 ```来分隔指令和待总结的内容
response = get_completion(prompt)
print(response)
  1. 寻求结构化的输出。按照某种格式组织的内容,例如JSON、HTML等。这种输出非常适合在代码中进一步解析和处理。例如,您可以在 Python 中将其读入字典或列表中。
  • 在以下示例中,我们要求 GPT 生成三本书的标题、作者和类别,并要求 GPT 以 JSON 的格式返回给我们,为便于解析,我们指定了 Json 的键。
prompt = f"""
请生成包括书名、作者和类别的三本虚构的、非真实存在的中文书籍清单,\
并以 JSON 格式提供,其中包含以下键:book_id、title、author、genre。
"""
response = get_completion(prompt)
print(response)
  • 返回值
{"books": [{"book_id": 1,"title": "迷失的时光","author": "张三","genre": "科幻"},{"book_id": 2,"title": "幻境之门","author": "李四","genre": "奇幻"},{"book_id": 3,"title": "虚拟现实","author": "王五","genre": "科幻"}]
}
  1. 要求模型检查是否满足条件
# 满足条件的输入(text中提供了步骤)
text_1 = f"""
泡一杯茶很容易。首先,需要把水烧开。\
在等待期间,拿一个杯子并把茶包放进去。\
一旦水足够热,就把它倒在茶包上。\
等待一会儿,让茶叶浸泡。几分钟后,取出茶包。\
如果您愿意,可以加一些糖或牛奶调味。\
就这样,您可以享受一杯美味的茶了。
"""
prompt = f"""
您将获得由三个引号括起来的文本。\
如果它包含一系列的指令,则需要按照以下格式重新编写这些指令:第一步 - ...
第二步 - …
…
第N步 - …如果文本中不包含一系列的指令,则直接写“未提供步骤”。"
\"\"\"{text_1}\"\"\"
"""
response = get_completion(prompt)
print("Text 1 的总结:")
print(response)
Text 1 的总结:
第一步 - 把水烧开。
第二步 - 拿一个杯子并把茶包放进去。
第三步 - 把烧开的水倒在茶包上。
第四步 - 等待几分钟,让茶叶浸泡。
第五步 - 取出茶包。
第六步 - 如果需要,加入糖或牛奶调味。
第七步 - 就这样,您可以享受一杯美味的茶了。
  1. 提供少量示例。“Few-shot” prompting,即在要求模型执行实际任务之前,给模型一两个已完成的样例,让模型了解我们的要求和期望的输出样式。
prompt = f"""
您的任务是以一致的风格回答问题。<孩子>: 请教我何为耐心。<祖父母>: 挖出最深峡谷的河流源于一处不起眼的泉眼;最宏伟的交响乐从单一的音符开始;最复杂的挂毯以一根孤独的线开始编织。<孩子>: 请教我何为韧性。
"""
response = get_completion(prompt)
print(response)
  1. 指定回答的步骤和格式。
prompt_2 = f"""
1-用一句话概括下面用<>括起来的文本。
2-将摘要翻译成英语。
3-在英语摘要中列出每个名称。
4-输出一个 JSON 对象,其中包含以下键:English_summary,num_names。请使用以下格式:
文本:<要总结的文本>
摘要:<摘要>
翻译:<摘要的翻译>
名称:<英语摘要中的名称列表>
输出 JSON:<带有 English_summary 和 num_names 的 JSON>Text: <{text}>
"""
response = get_completion(prompt_2)
print("\nprompt 2:")
print(response)

幻觉问题

  • 虚假知识:模型偶尔会生成一些看似真实实则编造的知识
  • 在开发与应用语言模型时,需要注意它们可能生成虚假信息的风险。尽管模型经过大规模预训练,掌握了丰富知识,但它实际上并没有完全记住所见的信息,难以准确判断自己的知识边界,可能做出错误推断。若让语言模型描述一个不存在的产品,它可能会自行构造出似是而非的细节。这被称为“幻觉”(Hallucination),是语言模型的一大缺陷。

如何解决幻觉问题?

  1. Prompt中加入限制词
  2. 外挂知识库

迭代优化

Prompt 开发也采用类似循环迭代的方式,逐步逼近最优。具体来说,有了任务想法后,可以先编写初版 Prompt,注意清晰明确并给模型充足思考时间。运行后检查结果,如果不理想,则分析 Prompt 不够清楚或思考时间不够等原因,做出改进,再次运行。如此循环多次,终将找到适合应用的 Prompt。

  1. 优化提示:直接加入长度限制词,使用最多50个词

    • 当在 Prompt 中设置长度限制要求时,语言模型生成的输出长度不总能精确符合要求,但基本能控制在可接受的误差范围内。比如要求生成50词的文本,语言模型有时会生成60词左右的输出,但总体接近预定长度。
    • 这是因为语言模型在计算和判断文本长度时依赖于分词器,而分词器在字符统计方面不具备完美精度。目前存在多种方法可以尝试控制语言模型生成输出的长度,比如指定语句数、词数、汉字数等。
  2. 根据回复,不断的增加限制词。

  3. 可以让模型返回表格。

文本摘要

多条文本:放在一个list里面,然后for遍历

reviews = [review_1, review_2, review_3, review_4]for i in range(len(reviews)):prompt = f"""你的任务是从电子商务网站上的产品评论中提取相关信息。请对三个反引号之间的评论文本进行概括,最多20个词汇。评论文本: ```{reviews[i]}```"""response = get_completion(prompt)print(f"评论{i+1}: ", response, "\n")

文本转换

下面是一个示例,展示了如何使用一个Prompt,同时对一段文本进行翻译、拼写纠正、语气调整和格式转换等操作。

prompt = f"""
针对以下三个反引号之间的英文评论文本,
首先进行拼写及语法纠错,
然后将其转化成中文,
再将其转化成优质淘宝评论的风格,从各种角度出发,分别说明产品的优点与缺点,并进行总结。
润色一下描述,使评论更具有吸引力。
输出结果格式为:
【优点】xxx
【缺点】xxx
【总结】xxx
注意,只需填写xxx部分,并分段输出。
将结果输出成Markdown格式。
```{text}```
"""
response = get_completion(prompt)
display(Markdown(response))

温度系数

  • 大语言模型中的 “温度”(temperature) 参数可以控制生成文本的随机性和多样性。temperature 的值越大,语言模型输出的多样性越大;temperature 的值越小,输出越倾向高概率的文本。
# 第一次运行
prompt = f"""
你是一名客户服务的AI助手。
你的任务是给一位重要的客户发送邮件回复。
根据通过“```”分隔的客户电子邮件生成回复,以感谢客户的评价。
如果情感是积极的或中性的,感谢他们的评价。
如果情感是消极的,道歉并建议他们联系客户服务。
请确保使用评论中的具体细节。
以简明和专业的语气写信。
以“AI客户代理”的名义签署电子邮件。
客户评价:```{review}```
评论情感:{sentiment}
"""
response = get_completion(prompt, temperature=0.7)
print(response)

聊天机器人

大型语言模型带给我们的激动人心的一种可能性是,我们可以通过它构建定制的聊天机器人(Chatbot),而且只需很少的工作量。在这一章节的探索中,我们将带你了解如何利用会话形式,与具有个性化特性(或专门为特定任务或行为设计)的聊天机器人进行深度对话。

  • 单轮对话:即 get_completion ,其适用于单轮对话。我们将 Prompt 放入某种类似用户消息的对话框中
  • get_completion_from_messages ,传入一个消息列表。这些消息可以来自大量不同的角色 (roles) ,我们会描述一下这些角色。
import openai# 下文第一个函数即tool工具包中的同名函数,此处展示出来以便于读者对比
def get_completion(prompt, model="gpt-3.5-turbo"):messages = [{"role": "user", "content": prompt}]response = openai.ChatCompletion.create(model=model,messages=messages,temperature=0, # 控制模型输出的随机程度)return response.choices[0].message["content"]def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0):response = openai.ChatCompletion.create(model=model,messages=messages,temperature=temperature, # 控制模型输出的随机程度)
#     print(str(response.choices[0].message))return response.choices[0].message["content"]
  • 问答
# 中文
messages =  [  
{'role':'system', 'content':'你是一个像莎士比亚一样说话的助手。'},    
{'role':'user', 'content':'给我讲个笑话'},   
{'role':'assistant', 'content':'鸡为什么过马路'},   
{'role':'user', 'content':'我不知道'}  ]response = get_completion_from_messages(messages, temperature=1)
print(response)
  • 上下文提示
# 中文
messages =  [  
{'role':'system', 'content':'你是个友好的聊天机器人。'},
{'role':'user', 'content':'Hi, 我是Isa'},
{'role':'assistant', 'content': "Hi Isa! 很高兴认识你。今天有什么可以帮到你的吗?"},
{'role':'user', 'content':'是的,你可以提醒我, 我的名字是什么?'}  ]
response = get_completion_from_messages(messages, temperature=1)
print(response)

订餐机器人

  • 这个机器人将被设计为自动收集用户信息,并接收来自比萨饼店的订单
def collect_messages(_):# panels 就是记录上下文对话,pn.Row()prompt = inp.value_inputinp.value = ''context.append({'role':'user', 'content':f"{prompt}"})response = get_completion_from_messages(context) context.append({'role':'assistant', 'content':f"{response}"})panels.append(pn.Row('User:', pn.pane.Markdown(prompt, width=600)))panels.append(pn.Row('Assistant:', pn.pane.Markdown(response, width=600, style={'background-color': '#F6F6F6'})))return pn.Column(*panels)

这个函数将收集我们的用户消息,以便我们可以避免像刚才一样手动输入。这个函数将从我们下面构建的用户界面中收集 Prompt ,然后将其附加到一个名为上下文( context )的列表中,并在每次调用模型时使用该上下文。模型的响应也会添加到上下文中,所以用户消息和模型消息都被添加到上下文中,上下文逐渐变长。这样,模型就有了需要的信息来确定下一步要做什么。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/65010.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode】85.最大矩形

题目 给定一个仅包含 0 和 1 、大小为 rows x cols 的二维二进制矩阵&#xff0c;找出只包含 1 的最大矩形&#xff0c;并返回其面积。 示例 1&#xff1a; 输入&#xff1a;matrix [["1","0","1","0","0"],["1&quo…

django后台启动CORS跨越配置

文章目录 背景什么是跨域问题&#xff1f;跨域问题的解决方案 Django 解决跨域问题 背景 什么是跨域问题&#xff1f; 跨域问题是指浏览器的同源策略限制了来自不同域的 AJAX 请求。 具体来说: 同源策略要求源相同才能正常进行 AJAX 通信。判断是否同源需要满足三个条件: 协…

图解 STP

网络环路 现在我们的生活已经离不开网络&#xff0c;如果我家断网&#xff0c;我会抱怨这什么破网络&#xff0c;影响到我刷抖音、打游戏&#xff1b;如果公司断网&#xff0c;那老板估计会骂娘&#xff0c;因为会影响到公司正常运转&#xff0c;直接造成经济损失。网络通信中&…

基于Matlab利用IRM和RRTstar实现无人机路径规划(附上源码+数据+说明+报告+PPT)

无人机路径规划是无人机应用领域中的关键问题之一。本文提出了一种基于IRM&#xff08;Informed RRTstar Method&#xff09;和RRTstar&#xff08;Rapidly-exploring Random Tree star&#xff09;算法的无人机路径规划方法&#xff0c;并使用Matlab进行实现。该方法通过结合I…

设计模式行为型-状态模式

文章目录 简介状态模式基础定义状态接口或抽象类实现具体状态类 上下文类与状态转换上下文类的定义和作用状态转换及触发条件 状态模式的优势与适用性优点一&#xff1a;可维护的代码优点二&#xff1a;清晰的状态管理适用场景一&#xff1a;对象拥有多个状态适用场景二&#x…

【Unity】常见的角色移动旋转

在Unity 3D游戏引擎中&#xff0c;可以使用不同的方式对物体进行旋转。以下是几种常见的旋转方式&#xff1a; 欧拉角&#xff08;Euler Angles&#xff09;&#xff1a;欧拉角是一种常用的旋转表示方法&#xff0c;通过绕物体的 X、Y 和 Z 轴的旋转角度来描述物体的旋转。在Un…

区块链技术与应用 - 学习笔记1【引言】

大家好&#xff0c;我是比特桃。本系列主要将我之前学习区块链技术时所做的笔记&#xff0c;进行统一的优化及整合。其中大量笔记源于视频课程&#xff1a;北京大学肖臻老师《区块链技术与应用》公开课。肖老师的课让我找回了求知若渴般的感觉&#xff0c;非常享受学习这门课的…

内存管理方式

内存管理 一、C/C内存分布1、内存空间的介绍2、示例题目3、示例题目图解 二、C语言动态内存管理方式1、代码2、介绍 三、C内存管理方式1、概念2、代码3、代码所代表的意义 四、new和delete操作自定义类型1、代码2、运行结果3、特点 五、operator new与operator delete函数1、概…

Eureka 注册中心的使用

环境 springboot springcloud Eureka-Server注册中心服务端 pom.xml导入依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-server</artifactId><version>2.2.7.RELEAS…

Go的数据结构-hashmap

开放寻址法和拉链法 runtime.hamp bucket的数据结构 bucket的指针指向这里 map初始化&#xff1a;make 和字面量 make初始化 新建一个hamp结尾体&#xff0c;计算大B&#xff0c;创建一个桶数组 字面量初始化 map的并发解决 sync.map

无涯教程-JavaScript - QUARTILE函数

QUARTILE函数取代了Excel 2010中的QUARTILE.INC函数。 描述 该函数返回数据集的四分位数。四分位数通常用于销售和调查数据中,以将人群分为几类。 语法 QUARTILE (array,quart)争论 Argument描述Required/OptionalArrayThe array or cell range of numeric values for whi…

怎么提取视频中的音乐保存到本地?其实方法很简单

当你想要使用视频中的音乐时&#xff0c;你可以考虑将它从视频中提取出来。这可以用于制作音频样本集&#xff0c;制作铃声或其他音频素材&#xff0c;或者向其他人展示视频的音乐部分而无需显示视频本身。如果你是一位音乐制作人员&#xff0c;你可能会需要一些特定类型的音效…

CP Autosar-Ethernet配置

文章目录 前言一、Eth层级结构介绍二、Autosar实践2.1 ETH Driver2.2 Eth InterfaceEth Interface Autosar配置2.3 TcpIp模块Eth TcpIp Autosar配置2.4 SoAdEth SoAd配置前言 因汽车E/E架构和功能的复杂度提升而带来的对车辆数据传输带宽提高和通讯方式改变(基于服务的通讯-S…

JavaScript(函数,作用域和闭包)

目录 一&#xff0c;什么是函数1.1&#xff0c;常用系统函数1.2&#xff0c;函数声明 1.3&#xff0c;函数表达式二&#xff0c;预解析2.1&#xff0c;函数自调用 2.2&#xff0c;回调函数三&#xff0c;变量的作用域3.1&#xff0c;隐式全局变量 四&#xff0c;作用域与块级作…

TDengine函数大全-转换函数

以下内容来自 TDengine 官方文档 及 GitHub 内容 。 以下所有示例基于 TDengine 3.1.0.3 TDengine函数大全 1.数学函数 2.字符串函数 3.转换函数 4.时间和日期函数 5.聚合函数 6.选择函数 7.时序数据库特有函数 8.系统函数 转换函数 TDengine函数大全CASTTO_ISO8601TO_UNIXTIM…

Seaborn绘制热力图的子图

Seaborn绘制热力图的子图 提示&#xff1a;如何绘制三张子图 绘制的时候&#xff0c;会出现如下问题 &#xff08;1&#xff09;如何绘制1*3的子图 &#xff08;2&#xff09;三个显示条&#xff0c;如何只显示最后一个 提示&#xff1a;下面就展示详细步骤 Seaborn绘制热力…

您的计算机已被.makop勒索病毒感染?恢复您的数据的方法在这里!

引言&#xff1a; 近年来&#xff0c;网络犯罪日益猖獗&#xff0c;各种恶意软件不断涌现&#xff0c;其中一种备受关注的就是勒索病毒。 .Makop 勒索病毒&#xff08;也被称为 Makop Ransomware &#xff09;是其中的一种&#xff0c;它以其恶意加密用户文件并勒索赎金的手法&…

HTTP请求超时:问题、原因与解决方案

引言 在互联网应用程序中&#xff0c;HTTP请求是实现数据传输和请求响应的核心过程。然而&#xff0c;有时候这个过程可能会因为各种原因而出现超时&#xff0c;导致用户无法及时获取所需信息&#xff0c;甚至引发系统崩溃。本文将深入探讨HTTP请求超时的原因&#xff0c;并提…

vue 根据数值判断颜色

1.首先style样式给两种颜色 用:class 三元运算符判断出一种颜色 第一步&#xff1a;在style里边设置两种颜色 .green{color: green; } .orange{color: orangered; }在取数据的标签 里边 判断一种颜色 :class"item.quote.current >0 ?orange: green"<van-gri…

单片机-控制按键点亮LED灯

1、按键电路图 定义四个按键引脚 1、按键按下 为 输入为低电平 2、按键不按下 IO有上拉电阻&#xff0c;为高电平 // 定义 按键的 管教 sbit KEY1 P3^1; sbit KEY2 P3^0; sbit KEY3 P3^2; sbit KEY4 P3^3; 2、LED灯电路图 LED 输出高电平为亮 // 定义LED灯 管教 sbit LED1…