(27)Linux信号的产生核心转储---初步认识信号

一、信号入门

1. 生活角度的信号

  • 你在网上买了很多件商品,再等待不同商品快递的到来。但即便快递没有到来,你也知道快递来临时, 你该怎么处理快递。也就是你能“识别快递”
  • 当快递员到了你楼下,你也收到快递到来的通知,但是你正在打游戏,需5min之后才能去取快递。那 么在在这5min之内,你并没有下去去取快递,但是你是知道有快递到来了。也就是取快递的行为并不 是一定要立即执行,可以理解成“在合适的时候去取”。
  • 在收到通知,再到你拿到快递期间,是有一个时间窗口的,在这段时间,你并没有拿到快递,但是你知 道有一个快递已经来了。本质上是你“记住了有一个快递要去取”
  • 当你时间合适,顺利拿到快递之后,就要开始处理快递了。而处理快递一般方式有三种:1. 执行默认动 作(幸福的打开快递,使用商品)2. 执行自定义动作(快递是零食,你要送给你你的女朋友)3. 忽略快 递(快递拿上来之后,扔掉床头,继续开一把游戏)
  • 快递到来的整个过程,对你来讲是异步的,你不能准确断定快递员什么时候给你打电话 

2. 技术应用角度的信号 

1. 用户输入命令,在Shell下启动一个前台进程。 . 用户按下Ctrl-C ,这个键盘输入产生一个硬件中断,被OS获取,解释成信号,发送给目标前台进程 . 前台进程因为收到信号,进而引起进程退出

//signal.cc
#include<iostream>
using namespace std;int  main()
{while(1){cout<<"I am a process! I am waiting signal"<<endl;}return 0;
}

 

  • 请将生活例子和 Ctrl-C 信号处理过程相结合,解释一下信号处理过程
  • 进程就是你,操作系统就是快递员,信号就是快递 

3. 注意 

  • 1. Ctrl-C 产生的信号只能发给前台进程。一个命令后面加个&可以放到后台运行,这样Shell不必等待进程 结束就可以接受新的命令,启动新的进程。
  • 2. Shell可以同时运行一个前台进程和任意多个后台进程,只有前台进程才能接到像 Ctrl-C 这种控制键产生 的信号。
  • 3. 前台进程在运行过程中用户随时可能按下 Ctrl-C 而产生一个信号,也就是说该进程的用户空间代码执行 到任何地方都有可能收到 SIGINT 信号而终止,所以信号相对于进程的控制流程来说是异步 (Asynchronous)的。 

4. 信号概念 

信号是进程之间事件异步通知的一种方式,属于软中断。

  • 进程之所以能够识别信号,是因为程序员将对应的信号种类和逻辑已经写好了的。
  • 当信号发给进程后,进程不一定要立刻去处理,可能有更加紧急的任务,会在合适的时候去处理。
  • 进程收到信号到处理信号之前会有一个窗口期,这个期间要将收到的信号进行保存。
  • 处理信号的方式有三种:默认动作,自定义动作,忽略。

 

我们学习信号是学习它的整个生命周期,按照时间轴,分为信号产生,信号保存,信号处理。但是在这之前先需要学习一些预备知识。

进程能够识别的信号是已经写好的,它有62个:

kill -l

  • 红色框中的是普通信号,编号从1-31。
  • 绿色框中的是实时信号,编号从34-64。

这其中没有32号和33号信号,所以一共有62个信号。而且这里我们只学习普通信号,对实时信号暂不做研究。 

在使用这些信号时,可以用信号名,也可以用信号编号,它是一样的,都是宏定义后的结果。

根据我们对Linux的了解,信号存放在哪里呢?既然信号是给进程的,而进程是通过内核数据结构来管理的,所以我们可以推断出,信号放在进程的task_struct结构体中。

既然它是在PCB中,而且数量是31个,task_struct中必定不会设置31个变量来存放信号,数组还有可能,但是信号的状态只分为有和没有两种,所以再次推断,31个信号放在一个32位的整形变量中,每个比特位代表一个信号。

就像在学习基础IO和进程间通信的时候,那些flags标志中的不同的比特位代表着不同的意义,这31个信号量也是这种方式:

具体的保存细节后面本喵再详细讲解。

问题来了,内核数据结构的修改,这个工作是由谁来完成的?毫无疑问是操作系统,因为task_struct就是它维护的,而且是存在于内存中的,只有操作系统才有权力去修改它,用户是无法直接操作的,因为操作系统不相信任何人。

所以说,无论哪个信号,最后的本质都是由操作系统发生给进程的,这里的发送本质就是在修改task_struct中存放信号那个变量的比特位

5.信号处理方法的注册

 所谓的注册,就是告诉操作系统,当某个进程接收到某个信号后的处理方式。

既然是告诉操作系统,那么肯定会用到系统调用,该系统调用的名字是signal()

int signal:要注册的信号编号
sighandler_t handler:自定义的函数指针

 可以将信号的处理方式写成一个函数,然后将函数名传递个signal,此时当进程接收到signum指定的信号编号时,就会执行我们定义的函数。

void handler(int signo)
{cout<<"进程接收到的一个信号,编号:"<<signo<<endl;
}
#include<iostream>
#include<unistd.h>
#include<signal.h>
using namespace std;void handler(int signo)
{cout<<"进程接收到的一个信号,编号:"<<signo<<endl;
}int  main()
{signal(2,handler);int  count=0;while(1){cout<<"I am a process! I am waiting signal"<<count++<<endl;sleep(1);}return 0;
}

运行起来后发现,按上ctrl+c后,进程不会结束了。

  • 2号信号SIGINT的默认处理方式就是结束进程。
  • 我们自定义的处理方式中并没有结束进程,所以进程在收到2号进程后打印了一句话。

所有信号的默认处理方式都是结束进程,只是不同的信号代表的意义不一样。 

 二、信号的产生

1. 通过终端按键产生信号

SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump,现在我们来验证一 下。

#include<iostream>
#include<unistd.h>
#include<signal.h>
using namespace std;int signo_arr[2]={2,3};
void handler(int signo)
{cout<<"进程接收到的一个信号,编号:"<<signo<<endl;
}int  main()
{for(auto& signo:signo_arr){signal(signo,handler);}int  count=0;while(1){cout<<"I am a process! I am waiting signal "<<count++<<endl;sleep(1);}return 0;
}

 

可以看到通过键盘产生了2号和3号信号。

2、调用系统调用向进程发信号 

 系统调用kill():

  • pid_t pid:要给发信号的pid
  • int sig:要发送的信号编号
  • 返回值:发送成功返回0,失败返回-1

该系统调用是一个进程给另一个进程发送指定信号,可以向任意进程发送任意信号。 

信号接收端: 

//mytest.cc
#include<iostream>
#include<unistd.h>
#include<signal.h>
#include<string.h>
using namespace std;int main()
{while(1){cout<<"我是一个正在运行的进程pid:"<<getpid()<<endl;sleep(2);}return 0;
}

 信号发送端:

//mysignal.cc
#include<iostream>
#include<unistd.h>
#include<signal.h>
#include<string.h>
using namespace std;int signo_arr[2]={2,3};
void handler(int signo)
{cout<<"进程接收到的一个信号,编号:"<<signo<<endl;
}
void Usage(const string& proc)
{//cout<<"Usage: "<<proc<<"signo pid: "<<endl;
}int  main(int argc,char* argv[])
{if(argc!=3){Usage(argv[0]);exit(1);}int signo=atoi(argv[1]);pid_t pid=atoi(argv[2]);int ret=kill(pid,signo);if(ret!=0){cerr<<errno<<":"<<strerror(errno)<<endl;exit(2);}return 0;
}

这是一个带有命令行参数的程序,输入的选项中的pid值和信号编号,在程序中在调用kill系统调用向指定pid的进程发送指定信号。 

运行结果:

 左边在执行mysginal的时候,输入对应的信号编号和pid,右边正在运行的进程就会接收到指定的信号而停止运行。

系统调用raise():

int sig:要发送的信号
返回值:发送成功返回0,失败返回-1

该系统调用是由进程自己调用,也就是进程自己可以给自己发送任意信号。

通过命令行参数指定信号,在程序执行5秒钟后给自己发送该信号。

无论命令行输入哪个信号的编号,在5秒钟后,该进程都会给自己发送输入的信号,让进程结束。

系统调用abort():

没有参数,没有返回值

该系统调用只能给自己发送指定的信号,该信号是SIGABRT,信号编号是6。

运行结果:

在运行5秒钟后,该进程接收到了6号信号SIGABRT。

虽然有3个系统调用来产生信号,但是归根到底都是在使用kill系统调用。

  • kill()可以给任意进程发送任意信号。
  • raise()可以给自己发送任意信号。
//raise本质
kill(getpid(),signo);

 abort()可以给自己发送SIGABRT信号。

//abort本质
kill(getpid(),SIGABRT);

3、硬件异常产生信号

除0操作导致的硬件异常:

在这段代码中,有除0操作,我们知道,除0得到的是无穷大的数,所以在编程的时候是不允许出现的。

  • 在运行的时候,直接出错,没有再执行下去,是因为接收到了信号。
  • 接收到的信号是SIGFPE信号,编号为8号。

 这其实就是一种硬件异常产生的信号。

  • CPU中有很多的寄存器,例如eax,ebx,eip等等。

CPU会从内存中将代码中的变量拿到寄存器中进行运算,如果有必要,还会将运算的结果放回到内存中。

  •     还有一个状态寄存器,如果CPU在运算的时候发现了除0操作,就会将状态寄存器的溢出标志位置一。

此时就意味着硬件产生了异常。而操作系统是一个进行软硬件资源管理的软件,CPU的中状态寄存器的溢出标志位置一后,操作系统可以第一时间拿到。

除0导致硬件异常以后,操作系统会给对应的进程发送SIGFPE信号。 

当进程接收到SIGFPE信号以后,默认的处理方式就是结束进程。

现在我们对这个SIGFPE信号注册一个自定义处理方式:

只打印接收到的信号编号,进程不退出。

在进程运行起来后,怎么就开始鞭尸了呢?也就是这个信号被操作系统不停的发送给这个进程。

  • 进程收到信号后进程不退出,随着CPU时间片的轮转就会再次被调到。
  • CPU中只有一份寄存器,但是寄存器中的内容属于当前进程的上下文。
  • 当进程被切换的时候,就有无数次的状态寄存器被保存和恢复的过程。
  • 而除0操作导致的溢出标志位置一的数据还会被恢复到CPU中。
  • 所以每一次恢复的时候,操作系统就会识别到,并且给对应进程发送SIGFPE信号。

 所以就会导致上面不停调用自定义处理函数,不停打印接收到的信号编号。

        解引用空指针导致的硬件异常:

  • 运行的时候直接出错,没有再运行下去,也是因为接收到了信号。
  • 接收到的信号是SIGSEGV,编号是11。

这同样是一种硬件异常产生的信号。 

  •  我们之前一直谈论的页表时间上是页表+MMU,而MMU是在CPU中的,未来简便,我们就只说页表。
  • 进程地址空间和物理内存之间的映射关系实际上是有MMU去完成映射的。
  • 当对空指针解引用的时候,MMU会拒绝这种操作,从而产生异常标志。
  • 操作系统拿到MMU产生的异常以后就会给对应的进程发送SIGSEGV信号。

 当进程接收到编号为11的SIGSEGV信号以后,默认的处理动作就是结束进程。

将这个信号注册自定义处理方式,同样打印接收到的信号编号,但是不结束进程,可以看到,和除0操作一样,也是在鞭尸,不停的打印。

  • 硬件异常所产生的信号,如果不结束这个进程,我们是没有能力去处理这个进程的。
  • 随着时间片的轮转,这个导致硬件异常的进程还会不停的调到,所以操作系统会不停的向进程发送信号。
  •  硬件异常产生的信号并不会显示发送,而是由操作系统自动发送的。

4、由软件条件产生信号 

读端关闭触发的信号:

比如在学习匿名管道的时候,当读端关闭的时候,写端所在进程就会收到编号为13的SIGPIPE信号结束进程。

#include<iostream>
#include<unistd.h>
#include<signal.h>
#include<string.h>
#include<stdlib.h>
#include<error.h>
using namespace std;int signo_arr[2]={2,3};void handler(int signo)
{sleep(1);cout<<"进程接收到的一个信号,编号:"<<signo<<endl;
}int  main(int argc,char* argv[])
{int fds[2];int ret=pipe(fds);if(ret==-1){cerr<<errno<<":"<<strerror(errno)<<endl;exit(1);}pid_t id=fork();int cnt=0;if(id==0){close(fds[1]);while(1){char* msg[1024];ssize_t ret=read(fds[0],msg,sizeof(msg)-1);printf("我是子进程,pid:%d,receive data:%s\n",getpid(),msg);if(++cnt==5){//5s后关闭读端close(fds[0]);cout<<"读端关闭"<<endl;}sleep(1);}}signal(SIGPIPE,handler);//自定义处理方式close(fds[0]);const char* buffer="I am 子进程";while(1){ssize_t ret=write(fds[1],buffer,strlen(buffer));cout<<"我是父进程,我正在运行,pid: "<<getpid()<<endl;sleep(1);}return 0;
}

运行结果:

在读端关闭以后,写端的自定义处理方式中就接收到了系统发给的SIGPIPE信号,编号为13。

  • 读端是否关闭是软件中的条件。
  • 当条件达成以后,产生信号。

闹钟触发的信号:

闹钟就是系统中的定时器,使用的时候同样需要通过系统调用实现:

 

  • 参数:要定的时长。
  • 返回值:距离定的时间还差多少。

 

当定时1秒钟时间到了以后,自定义处理方式中打印出接收到的信号编号是14号的SIGALRM信号,并且统计出了1秒钟进行加1操作的次数。

  •     自定义处理方式中没有退出进程,所以在执行完处理方式以后,进程继续运行。
  •     也就是继续进行加1操作,但是不会再收到信号了,因为定时到的条件只达成一次,所以信号也只产生一次。

 如果想每隔一秒条件达成一次,产生一次SIGALRM信号,可以在这样处理:

运行结果:

  • 在自定义处理方式中定时1s。
  • 当1秒定时条件达成以后,产生信号,执行处理方法后会开始新一轮的定时。

软件中某个条件达成以后,操作系统就会产生相应的信号,比如上面的SIGPIPE信号和SIGALRM信号。 

闹钟的管理:

操作系统中会有很多个进程,我们可以创建一个闹钟,那么其他进程也可以创建闹钟,这样就会存在很多个闹钟,那么这些闹钟是怎么管理的呢?先描述再组织

首先需要创建一个闹钟的结构体,伪代码:

struct alarm
{unit64_t when;//定时时长int type;//闹钟类型,一次性还是周期性task_struct* p;//所属进程的地址struct_alarm* next;//下一个闹钟的地址//其他属性
}

大概就是这样的一个结构体来描述闹钟,必须由的肯定是定时时长,所属进程。

接下来就是组织了,用某一种数据结构来管理这些闹钟对象,为了方便管理,可以选择优先级队列prority_queuq来管理。

  • 将定时时间最小的闹钟放在前面,时间长的放在后面。
  • 操作系统每次只需要检测队首的定时时间是否达到就可以。
  • 达到了就向对应进程发送SIGALRM信号,并且从队列中取出,以待再次检测。

操作系统会周期性的检测链表中的这些闹钟,伪代码:

curr_timestamp > alarm.when;//超时了
//OS发送SIGALRM信号到alarm.p;

 具体的实现细节有兴趣的小伙伴可以看看源码是怎么管理的,这里本喵只是介绍一种思想。

三、核心转储

是否有一个疑问,31个信号的默认处理方式都是结束进程,并且还可以自定义处理方式,那么为什么要这么多信号呢?一个信号不就行了吗?

  • 重要的不是产生信号的结果而是产生信号的原因
  • 所有出现异常的进程,必然是收到了某一个信号。

在man的7号手册中介绍了信号的名称,对应的编号,默认处理方式,以及产生该信号的原因。

  • 我们可以根据这个表找到不同信号产生所对应的不同原因。

 

以信号2和3为例,他两的默认处理方式一个是Term,一个是Core。

  • Term和Core的结果都是结束进程。

那么这两个方式的区别在哪里呢?

  • Term方式仅仅是结束进程,结束了以后就什么都不干了。
  • 但是Core不仅结束进程,而且还会保存一些信息。

 

 在数据越界非常严重的时候,该进程会接收到SIGSEGV信号,来结束进程。

11号信号的默认处理方式是Core。

在云服务器上,默认情况下是看不到Core退出的现象的,这是因为云服务器关闭了core file选项:

  • core file size(红色框)的大小是0,意味着这个选项是关闭的。 
  • 从这里还可以看到别的关于这个云服务器的信息,比如能够打开的最多文件个数,管道个数,以及栈的大小等等信息。 

为了能够看到Core方式的明显现象,我们需要将core file选项打开: 

 

此时该选项就打开了,表示的意思就是核心转储文件的大小是1024个数据块。 

  • 再运行数据越界的程序时,同样会收到SIGSEGV信号停止。
  • 但是在当前目录下会多出一个文件,如上图中的绿色框。

core.1739:被叫做核心转储文件,其中后缀1739是接收到该信号进程的pid值。 

对于一个奔溃的程序,我们最关心的是它为什么崩溃,在哪里崩溃?

  • 当进程出现异常的时候,将进程在对应的时刻,在内存中的有效数据转储到磁盘中-------核心转储

核心转储的文件我们可以拿着它进行调试,快速定位到出现异常而崩溃的位置。 

  • 使用gdb调试我们的可执行程序。
  • 调试开始后,输入core-file core.pid值,表明调试核心转储文件。
  • 此时gdb就会直接定位到产生异常的位置。

这就是核心转储的重要意义,它相比Term方式,能够让我们快速定位出现异常的位置。

感谢阅读!!!!!!!!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/649253.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker 体验怀旧游戏(魂斗罗等)

docker run --restart always -p 8081:80 --name fc-games -d registry.cn-hangzhou.aliyuncs.com/bystart/fc-games:latest ip:8081访问 jsnes: js制作了一个网页版的NES模拟&#xff0c;可以在网页上玩fc游戏 (gitee.com)

git用法总结

以gitee为例&#xff0c;GitHub也可参考本文 创建远程仓库 在自己的gitee主页 创建本地仓库 在文件夹下&#xff0c;右键→git bash here git init添加gitignore vi .gitignoregitignore里的内容根据自己实际情况设置&#xff0c;这里举个例子 # #开头的是注释 # Prer…

MiniTab的单值的变量控制图——I-MR 控制图分析

单值的变量控制图分为&#xff1a;I-MR 控制图、Z-MR 控制图、单值控制图、移动极差控制图4种。 I-MR 控制图 功能菜单请选择&#xff1a;统计>控制图>单值的变量控制图>I-MR。 使用 I-MR 控制图 可以在拥有连续数据且这些数据是不属于子组的单个观测值的情况下监视…

HarmonyOS漫谈---套壳安卓还是套壳苹果?HarmonyOS更像谁?

2020年以前华为手机的操作系统是EMUI,这个是在Android基础上扩展而来的,版本和android几乎一致,和市面上其它android手机厂家搭载的系统并无本质不同 2019年5月16日,美国针对华为发起了第一轮制裁。8月华为发布了HarmonyOS1.0,此时还只是主要在IOT设备上使用,智慧屏成为…

探索 DevOps 中的自动化技术

DevOps 是一种强调开发与 IT 运营之间合作的软件开发范式&#xff0c;主要依靠自动化来优化流程、提高生产力并确保及时、可靠的软件交付。以下是对 DevOps 不可或缺的关键自动化技术的探索&#xff1a; 1.持续集成/持续部署&#xff08;CI/CD&#xff09; 在 DevOps 领域&…

恒创科技:香港服务器内存不足有哪些原因?

内存是服务器中非常重要的组件之一&#xff0c;它直接影响服务器的运行速度和稳定性。然而&#xff0c;在使用香港服务器的过程中&#xff0c;有时候会出现内存不足的情况&#xff0c;导致服务器性能下降&#xff0c;甚至出现宕机等问题。那么&#xff0c;香港服务器内存不足的…

css设置不可点击

文章目录 一、前言二、MDN三、使用四、注意五、总结六、最后 一、前言 在网页开发中&#xff0c;经常会遇到一种情况&#xff0c;就是需要将某个元素的点击事件屏蔽&#xff0c;使其在用户点击时没有任何反应。这时候&#xff0c;我们可以通过CSS的pointer-events属性设置为no…

视频编码器行业研究:预计到2028年全球市场规模将达到180.92亿元

随着AI技术向视频产业生产、传输和消费环节的渗透&#xff0c;AI技术在视频分析中的应用逐渐常态化&#xff0c;智能视频衍生而出。智能视频的多元应用重塑了视频产业链&#xff0c;视频处理技术根据不同的视频应用多维迸发&#xff0c;视频编解码技术与AI技术的结合具有共性和…

【开源】基于JAVA语言的公司货物订单管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 客户管理模块2.2 商品维护模块2.3 供应商管理模块2.4 订单管理模块 三、系统展示四、核心代码4.1 查询供应商信息4.2 新增商品信息4.3 查询客户信息4.4 新增订单信息4.5 添加跟进子订单 五、免责说明 一、摘要 1.1 项目…

find命令 – 根据路径和条件搜索指定文件

linux-find find命令通常进行的是从根目录&#xff08;/&#xff09;开始的全盘搜索&#xff0c;有别于whereis、which、locate等有条件或部分文件的搜索。对于服务器负载较高的情况&#xff0c;建议不要在高峰时期使用find命令的模糊搜索&#xff0c;这会相对消耗较多的系统资…

【代码随想录-数组】有序数组的平方

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老导航 檀越剑指大厂系列:全面总结 jav…

【STM32】STM32学习笔记-BKP备份寄存器和RTC实时时钟(42)

00. 目录 文章目录 00. 目录01. BKP简介02. BKP特性03. BKP基本结构04. RTC简介05. RTC主要特性06. RTC框图07. RTC基本结构08. 硬件电路09. RTC操作注意事项10. 附录 01. BKP简介 备份寄存器是42个16位的寄存器&#xff0c;可用来存储84个字节的用户应用程序数据。他们处在备…

JPDA框架和JDWP协议

前言 在逆向开发中,一般都需要对目标App进行代码注入。主流的代码注入工具是Frida,这个工具能稳定高效实现java代码hook和native代码hook,不过缺点是需要使用Root设备,而且用js开发,入门门槛较高。最近发现一种非Root环境下对Debug App进行代码注入的方案,原理是利用Jav…

【Java语言基础④】Java编程基础——选择结构语句,循环结构语句

选择结构语句 1.if子句 if条件语句 if语句是指如果满足某种条件&#xff0c;就进行某种处理。例如&#xff0c;小明妈妈跟小明说“如果你考试得了100分&#xff0c;星期天就带你去游乐场玩”。 if语句的具体语法如下&#xff1a; if (判断条件) { 执行语句}if…else语句 if…e…

都 2024 年了,该如何搭建新的 React 项目?

在前端技术日新月异的今天&#xff0c;React 社区已经不再将 create-react-app 作为创建新项目的首选工具&#xff0c;而是推荐使用社区中流行的由 React 驱动的框架来创建新项目。本文就来探讨在 2024 年创建 React 项目的方式及其优缺点&#xff01; Create React App 有什么…

vivado 定义和配置I/O端口、

定义和配置I/O端口 您可以使用Vivado IDE导入、创建和配置I/O端口&#xff0c;如中所述以下部分。 导入I/O端口 根据项目类型&#xff0c;可以使用以下方法导入I/O端口&#xff1a; •I/O规划项目&#xff1a;您可以将XDC和CSV文件导入空的I/O规划项目当您使用文件导入功能…

Apache Shiro 安全框架

前言 Apache Shiro 是一个强大且容易使用的Java安全矿建&#xff0c;执行身份验证&#xff0c;授权&#xff0c;密码和会话管理。使用Shiro的易于理解的API您可以快速轻松的获得任何应用程序直到大的项目。 一丶什么是Shiro 1.Shiro是什么 Apache Shiro是一个强大且易于使用…

mysql高可用设计,主库挂了怎么办

实际上高可用就是系统能提供的一种无故障服务能力&#xff0c;就是避免宕机出现不能服务的场景。 首先来说对于无状态服务的高可用设计是比较简单的&#xff0c;发现有不能用的就直接停了换别的服务器就行&#xff0c;比如Nginx。这里说一下无状态服务就是不需要记录你的状态、…

防御保护---NAT实验

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一. 练习 PC4配置 FW2配置 sys int g0/0/0 ip add 192.168.100.3 24 service-manage all permit sys int l0 ip add 1.1.1.1 24 int g0/0/0 ip add 12.0.0.1 24 int g0/0/2 ip add 21.0.0.1 …

zuul网关

zuul网关 zuul自定义过滤器hystrix和ribbon时间RibbonAutoConfiguration自动配置FeignAutoConfiguration自动配置RibbonEurekaAutoConfigurationSendErrorFilter过滤器EnableZuulServerHasFeatures EnableZuulProxy zuul自定义过滤器 继承ZuulFilter类&#xff0c;实现其方法f…