【C++干货铺】 RAII实现智能指针

=========================================================================

个人主页点击直达:小白不是程序媛

C++系列专栏:C++干货铺

代码仓库:Gitee

=========================================================================

目录

为什么需要智能指针?

内存泄漏

        什么是内存泄漏,内存泄露的危害

内存泄漏的分类

堆内存泄漏(Heap leak)

系统资源泄露

如何避免内存泄漏

智能指针的使用及原理

RAII

智能指针的原理

std::auto_ptr

std::unipue_ptr

 std::shared_ptr

std::shared_ptr的循环引用

定制删除器


为什么需要智能指针?

下面我们先分析一下下面这段程序有没有什么内存方面的问题?

int div()
{int a, b;cin >> a >> b;if (b == 0)throw invalid_argument("除0错误");return a / b;
}
void Func()
{// 1、如果p1这里new 抛异常会如何?// 2、如果p2这里new 抛异常会如何?// 3、如果div调用这里又会抛异常会如何?int* p1 = new int;int* p2 = new int;cout << div() << endl;delete p1;delete p2;
}
int main()
{try{Func();}catch (exception& e){cout << e.what() << endl;}return 0;
}

注:如果我们输入的被除数不等于0这种情况没什么问题。调用Func()函数动态开辟两块空间,调用div()函数,div()函数正常返回;Func()函数调用结束,没有异常整个main()函数调用结束。当我们的被除数等于0时,就会存在内存泄漏。被除数输入0时,div()函数就会抛出异常;在main函数中这个异常被捕捉;程序调用结束。然而在div函数调用之前,我们动态开辟了两块空间没有被释放就会造成内存泄漏。因此我们就要解决这个问题,其实在异常那篇文章中我们已经给出了解决方案:就是连续的捕捉异常。也可以使用本篇文章中介绍的智能指针


内存泄漏

什么是内存泄漏,内存泄露的危害

什么是内存泄漏:

内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因而造成了内存的浪费。

内存泄漏的危害:

长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现内存泄漏会导致响应越来越慢,最终卡死。

void MemoryLeaks()
{// 1.内存申请了忘记释放int* p1 = (int*)malloc(sizeof(int));int* p2 = new int;// 2.异常安全问题int* p3 = new int[10];Func(); // 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放delete[] p3;
}

内存泄漏的分类

C/C++程序中一般我们关心两种方面的内存泄漏:

堆内存泄漏(Heap leak)

堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一
块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分
内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。

系统资源泄露

指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放
掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。

如何避免内存泄漏

  • 1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智能指针来管理才有保证。
  • 2. 采用RAII思想或者智能指针来管理资源。
  • 3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
  • 4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵

内存泄漏非常常见,解决方案分为两种:

  • 1、事前预防型。如智能指针等。
  • 2、事后查错型。如泄漏检测工具。

智能指针的使用及原理

RAII

RAII(Resource Acquisition Is Initialization)是一种利用对象生命周期来控制程序资源(如内
存、文件句柄、网络连接、互斥量等等)的简单技术。

在对象构造时获取资源,接着控制对资源的访问使之在对象的生命周期内始终保持有效,最后在
对象析构的时候释放资源。借此,我们实际上把管理一份资源的责任托管给了一个对象。这种做
法有两大好处:

  • 不需要显式地释放资源。
  • 采用这种方式,对象所需的资源在其生命期内始终保持有效。

就像上面的问题我们可以使用RAII的思想解决

template<class T>
class SmartPtr {
public:SmartPtr(T* ptr = nullptr): _ptr(ptr){}~SmartPtr(){if (_ptr)delete _ptr;}private:T* _ptr;
};
int div()
{int a, b;cin >> a >> b;if (b == 0)throw invalid_argument("除0错误");return a / b;
}
void Func()
{SmartPtr<int> sp1(new int);SmartPtr<int> sp2(new int);cout << div() << endl;
}
int main()
{try {Func();}catch (const exception& e){cout << e.what() << endl;}return 0;
}

智能指针的原理

上述的SmartPtr还不能将其称为智能指针,因为它还不具有指针的行为。指针可以解引用,也可
以通过->去访问所指空间中的内容,因此:AutoPtr模板类中还得需要将* 、->重载下,才可让其
像指针一样去使用。

总结一下智能指针的原理

  • 1. RAII特性
  • 2. 重载operator*和opertaor->,具有像指针一样的行为。

std::auto_ptr

std::auto_ptr文档介绍

C++98版本的库中就提供了auto_ptr的智能指针。下面演示的auto_ptr的使用及问题。
auto_ptr的实现原理:管理权转移的思想,下面简化模拟实现了一份auto_ptr来了解它的原

namespace L
{template<class T>class auto_ptr{public:auto_ptr( T* ptr):_ptr(ptr){}auto_ptr( auto_ptr<T>& ap):_ptr(ap._ptr){//管理权转移ap._ptr = nullptr;}auto_ptr<T>& operator=(auto_ptr<T> ap){//检测是否自己为自己赋值if (this != ap){//释放当前对象中的资源if (_ptr)delete _ptr;//转移资源_ptr = ap._ptr;ap._ptr = nullptr;}return *this;}~auto_ptr(){if (_ptr){cout << "delete:" << _ptr << endl;delete _ptr;}}//重载* 和 -> 操作符 像指针一样使用T& operator*(){return *_ptr;}T* operator->(){return _ptr;}private:T* _ptr;};
}
int main()
{L::auto_ptr<int> ap1(new int);L::auto_ptr<int> ap2 = ap1;// 管理权转移,导致对象悬空(*ap1)++;(*ap2)++;
}

总结:auto_ptr是一个失败的设计,拷贝构造获知复制重载后会使原来的对象悬空。


std::unipue_ptr

基于auto_ptr的失败,C++11中开始提供更靠谱的unique_ptr

unique_ptr文档介绍

unique_ptr的实现原理:简单粗暴的防拷贝,下面简化模拟实现了一份unique_ptr来了解它的原理

//unique_ptr
namespace LT
{template<class T>class unique_ptr{public:unique_ptr(T* ptr):_ptr(ptr){}~unique_ptr(){if (_ptr){cout << "delete:" << _ptr << endl;delete _ptr;}}T& operator*(){return *_ptr;}T* operator->(){return _ptr;}//将拷贝构造和赋值重载使用delete关键字删除unique_ptr(const unique_ptr<T>& sp) = delete;unique_ptr<T>& operator=(const unique_ptr<T>& sp) = delete;private://C98中也可以将拷贝构造和复制重载私有化/*unique_ptr(const unique_ptr<T>& up);unique_ptr<T>& operator=(const unique_ptr<T>& up);*/T* _ptr;};}
int main()
{LT::unique_ptr<int> up1(new int(1));//LT::unique_ptr<int> up2 = up1;LT::unique_ptr<int> up3(new int(2));//up1 = up3;
}

 

 


std::shared_ptr

C++11中开始提供更靠谱的并且支持拷贝的shared_ptr

std::shared_ptr文档介绍

shared_ptr的原理:是通过引用计数的方式来实现多个shared_ptr对象之间共享资源。

1. shared_ptr在其内部,给每个资源都维护了着一份计数,用来记录该份资源被几个对象共
享。
2. 在对象被销毁时(也就是析构函数调用),就说明自己不使用该资源了,对象的引用计数减
一。
3. 如果引用计数是0,就说明自己是最后一个使用该资源的对象,必须释放该资源;
4. 如果不是0,就说明除了自己还有其他对象在使用该份资源,不能释放该资源,否则其他对象就成野指针了。

下面简化模拟实现了一份shared_ptr来了解它的原理

namespace LTC
{template<class T>class shared_ptr{public:shared_ptr(T* ptr = nullptr):_ptr(ptr), _pcount(new int(1)){}shared_ptr(const shared_ptr<T>& sp):_ptr(sp._ptr),_pcount(sp._pcount){++(*_pcount);}shared_ptr<T>& operator=(const shared_ptr<T>& sp){//判断是不是自己重载自己if (_ptr != sp._ptr){//判断自己指向的资源应不应该释放if (--(*_pcount) == 0){delete _ptr;delete _pcount;}//改变指向 和计数器_ptr = sp._ptr;_pcount = sp._pcount;++(*_pcount);}return *this;}~shared_ptr(){//当计数器减减等于0时释放资源if (--(*_pcount) == 0){delete _ptr;delete _pcount;}}T& operator*(){return *_ptr;}T* operator->(){return _ptr;}private://指向开辟的空间T* _ptr ;//计数int* _pcount ;};
}

std::shared_ptr的循环引用

shared_ptr确实解决了不能拷贝的问题,但是却引出了新的问题——循环引用。

struct ListNode
{int _data;shared_ptr<ListNode> _prev;shared_ptr<ListNode> _next;~ListNode() { cout << "~ListNode()" << endl; }
};
int main()
{shared_ptr<ListNode> node1(new ListNode);shared_ptr<ListNode> node2(new ListNode);cout << node1.use_count() << endl;cout << node2.use_count() << endl;node1->_next = node2;node2->_prev = node1;cout << node1.use_count() << endl;cout << node2.use_count() << endl;return 0;
}

循环引用分析: 

1. node1和node2两个智能指针对象指向两个节点,引用计数变成1,我们不需要手delete。
2. node1的_next指向node2,node2的_prev指向node1,引用计数变成2。
3. node1和node2析构,引用计数减到1,但是_next还指向下一个节点。但是_prev还指向上
一个节点。
4. 也就是说_next析构了,node2就释放了。
5. 也就是说_prev析构了,node1就释放了。
6. 但是_next属于node的成员,node1释放了,_next才会析构,而node1由_prev管理,_prev属于node2成员,所以这就叫循环引用,谁也不会释放。

	template<class T>class weak_ptr{public:weak_ptr():_ptr(nullptr){}weak_ptr(const shared_ptr<T>& sp):_ptr(sp.get()){}weak_ptr<T>& operator=(const shared_ptr<T>& sp){_ptr = sp.get();return *this;}T& operator*(){return *_ptr;}T* operator->(){return _ptr;}private:T* _ptr;};	
struct ListNode{int _data;weak_ptr<ListNode> _prev;weak_ptr<ListNode> _next;~ListNode() { cout << "~ListNode()" << endl; }};
int main()
{shared_ptr<ListNode> node1(new ListNode);shared_ptr<ListNode> node2(new ListNode);cout << node1.use_count() << endl;cout << node2.use_count() << endl;node1->_next = node2;node2->_prev = node1;cout << node1.use_count() << endl;cout << node2.use_count() << endl;return 0;
}

解决方案:

在引用计数的场景下,把节点中的_prev和_next改成weak_ptr就可以了。原理就是,node1->_next = node2;和node2->_prev = node1;时weak_ptr的_next和_prev不会增加node1和node2的引用计数


定制删除器

上面的问题我们都是new一个对象,要是我们new一堆对象,而析构只能析构一个这怎么办呢?

namespace LTC
{template<class T>class shared_ptr{public:// RAIIshared_ptr(T* ptr = nullptr):_ptr(ptr), _pcount(new int(1)){}template<class D>shared_ptr(T* ptr, D del): _ptr(ptr), _pcount(new int(1)), _del(del){}// function<void(T*)> _del;void release(){if (--(*_pcount) == 0){//cout << "delete->" << _ptr << endl;//delete _ptr;_del(_ptr);delete _pcount;}}~shared_ptr(){release();}shared_ptr(const shared_ptr<T>& sp):_ptr(sp._ptr), _pcount(sp._pcount){++(*_pcount);}// sp1 = sp3shared_ptr<T>& operator=(const shared_ptr<T>& sp){if (_ptr != sp._ptr){release();_ptr = sp._ptr;_pcount = sp._pcount;++(*_pcount);}return *this;}// 像指针一样T& operator*(){return *_ptr;}T* operator->(){return _ptr;}int use_count() const{return *_pcount;}T* get() const{return _ptr;}private:T* _ptr;int* _pcount;function<void(T*)> _del = [](T* ptr) {delete ptr; };};
template<class T>
class DelArray
{
public:void operator()(T* ptr){delete[] ptr;}
};
void test_shared_ptr4()
{// 定制删除器LTC::shared_ptr<ListNode> sp1(new ListNode[10], DelArray<ListNode>());LTC::shared_ptr<ListNode> sp2(new ListNode[10], [](ListNode* ptr) {delete[] ptr; });//LTC::shared_ptr<FILE> sp3(fopen("Test.cpp", "r"), [](FILE* ptr) {fclose(ptr); });LTC::shared_ptr<ListNode> sp4(new ListNode);
}

在类成员中增加一个包装器,默认包装释放一个数据的lambda表达式;当动态开辟一组数据时候我们就要使用释放一组数据的方法(lambda表达式,仿函数)和默认的包装器发生重载,当动态开辟一个数据时候,直接使用默认释放一个数据的包装器。 


 今天给大家分享介绍了C++中的智能指针。如果觉得文章还不错的话,可以三连支持一下,个人主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的三连支持就是我前进的动力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/648980.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CMG GPP 0.05°全球区域2000~2019年月数据分享

各位同学们好&#xff0c;今天分享的是CMG GPP 0.05全球区域2000~2019年月数据。您可以私信或评论。 一、数据简介 准确估算陆地植被的初级生产总值&#xff08;GPP&#xff09;对于了解全球碳循环和预测未来气候变化至关重要。目前有多种基于不同方法的 GPP 产品&#xff0c…

ORM-08-EclipseLink 入门介绍

拓展阅读 The jdbc pool for java.(java 手写 jdbc 数据库连接池实现) The simple mybatis.&#xff08;手写简易版 mybatis&#xff09; 1. EclipseLink概述 本章介绍了EclipseLink及其关键特性&#xff1a;包括在EclipseLink中的组件、元数据、应用程序架构、映射和API。 本…

Leetcode—29. 两数相除【中等】

2023每日刷题&#xff08;九十四&#xff09; Leetcode—29. 两数相除 叛逆期实现代码 class Solution { public:int divide(int dividend, int divisor) {if(dividend INT_MIN && divisor -1) {return INT_MAX;} return dividend / divisor;} };运行结果 倍增算法…

第14章_数据结构与集合源码(一维数组,链表,栈,队列,树与二叉树,List接口分析,Map接口分析,Set接口分析,HashMap的相关问题)

文章目录 第14章_数据结构与集合源码本章专题与脉络1. 数据结构剖析1.1 研究对象一&#xff1a;数据间逻辑关系1.2 研究对象二&#xff1a;数据的存储结构&#xff08;或物理结构&#xff09;1.3 研究对象三&#xff1a;运算结构1.4 小结 2. 一维数组2.1 数组的特点2.2 自定义数…

何恺明 ResNet 引用量正式破20万!!!

注: 本文转自微信公众号 BravoAI (专注AI资讯和技术分享), 原文网址: 何恺明 ResNet 引用量正式破20万!!!, 扫码关注公众号 谷歌学术显示, 截止到 2024年1月26日, 何凯明 ResNet 一文引用量正式突破 20W!!! 更为惊人的是, 从论文发表到今天, 不过7年!!!‍‍‍‍‍‍‍‍‍‍‍‍…

springboot347基于web的铁路订票管理系统

获取源码——》公主号&#xff1a;计算机专业毕设大全

预处理详解1❤

一&#xff1a;预定义符号 C语言中设置了一些预定义符号&#xff0c;它们可以直接使用&#xff0c;同时预定义符号是在预处理期间处理的。 以下就是相关的预处理符号的作用。 二&#xff1a;#define定义常量 首先基本的语法是 #define name stuff 相对比较简单&#xff…

Ultraleap 3Di配置以及在 Unity 中使用 Ultraleap 3Di手部跟踪

0 开发需求 1、硬件&#xff1a;Ultraleap 手部追踪相机&#xff08;Ultraleap 3Di&#xff09; 2、软件&#xff1a;在计算机上安装Ultraleap Gemini (V5.2) 手部跟踪软件。 3、版本&#xff1a;Unity 2021 LTS 或更高版本 4、Unity XR插件管理&#xff1a;可从软件包管理器窗…

Bagging方法的基本思想

Bagging方法的基本思想实现 在Bagging集成当中&#xff0c;我们并行建立多个弱评估器&#xff08;通常是决策树&#xff0c;也可以是其他非线性算法&#xff09;&#xff0c;并综合多个弱评估器的结果进行输出。当集成算法目标是回归任务时&#xff0c;集成算法的输出结果是弱…

乖乖,咱不用BeanUtil.copy了,咱试试这款神级工具(超详细)

引言 在现代Java应用程序开发中&#xff0c;处理对象之间的映射是一个常见而且必不可少的任务。随着项目规模的增长&#xff0c;手动编写繁琐的映射代码不仅耗时且容易出错&#xff0c;因此开发者们一直在寻找更高效的解决方案。比如基于Dozer封装的或者Spring自带的BeanUtil.…

AI Infra论文阅读之通过打表得到训练大模型的最佳并行配置

目录 0x0. 前言0x1. 摘要0x2. 介绍0x3. 背景0x4. 实验设置0x5. 高效的LLM训练分析0x5.1 Fused Kernels 和 Flash Attention0x5.1.1 Attention0x5.1.2 RMSNorm Kernel 0x5.2 Activation Checkpointing0x5.3 Micro-Batch 大小0x5.4 Tensor Parallelism和Pipline Parallelism0x5.5…

幻兽帕鲁服务器一键搭建脚本

前言 幻兽帕鲁刚上线就百万在线人数。官方服务器的又经常不稳定。所以这里给大家带来最快捷的搭建教程。废话不多说直接开始。 服务器配置要求 这里推荐腾讯云的轻量云服务器 测试环境&#xff1a; CPU &#xff1a; 2核 内存&#xff1a;4GB 系统&#xff1a;Debian 12 64…

leetcode:二叉树的中序遍历(外加先序,后序遍历)

题外&#xff1a;另外三种遍历可以看这&#xff1a; 层序遍历&#xff1a; Leetcode:二分搜索树层次遍历-CSDN博客 先序遍历&#xff1a; 二叉树的先序&#xff0c;中序&#xff0c;后序遍历-CSDN博客 后序遍历&#xff1a; 二叉树的先序&#xff0c;中序&#xff0c;后序…

鸿蒙开发(Harmonyos兼容与Harmonyos适配)

布局的实现 Layout_ability_main.xml布局&#xff1a; <?xml version"1.0" encoding"utf-8"?> <DirectionalLayoutxmlns:ohos"http://schemas.huawei.com/res/ohos"ohos:height"match_parent"ohos:width"match_pare…

测试人员为什么要编写测试用例?好的测试用例应该具备那些特点?

设计测试用例可以说是测试人员的一项最基本技能 。很多时候当我们接到设计测试用例的任务时 &#xff0c;往往都是想的该如何更快的完成这项任务 &#xff1f;而很少去想为什么要完成这项任务? 对于测试用例也是如此&#xff0c;为什么要设计测试用例呢(目的)&#xff1f;其实…

Jellyfin影音服务本地部署并结合内网穿透实现公网访问本地资源

文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及&#xff0c;各种各样的使用需求也被开发出来&…

拼图小游戏的界面和菜单的搭建

package Puzzlegame.com.wxj.ui;import javax.swing.*;public class GameJframe extends JFrame { //游戏主界面 public GameJframe(){//初始化界面initJFrame();//初始化菜单initJmenuBar();//让界面显示出来this.setVisible(true); }private void initJmenuBar() {//创建整个…

需求变化频繁的情况下,如何实施自动化测试

一.通常来说&#xff0c;具备以下3个主要条件才能开展自动化测试工作: 1.需求变动不频繁 自动化测试脚本变化的频率决定了自动化测试的维护成本。如果需求变动过于频繁&#xff0c;那么测试人员就需要根据变动的需求来不断地更新自动化测试用例&#xff0c;从而适应新的功能。…

qiankun子应用静态资源404问题有效解决(涉及 css文件引用图片、svg图片无法转换成 base64等问题)

在&#x1f449;&#x1f3fb; qiankun微前端部署&#x1f448;&#x1f3fb;这个部署方式的前提下&#xff0c;遇到的问题并解决问题的过程 最开始的问题现象 通过http请求本地的静态json文件404css中部分引入的图片无法显示 最开始的解决方式 在&#x1f449;&#x1f3…

行测-言语:2.语句表达

行测-言语&#xff1a;2.语句表达 1. 语句排序题 捆绑就是看两句话是不是讲的同一个内容&#xff0c;相同内容的句子应该相连。 1.1 确定首句 1.1.1 下定义&#xff08;……就是 / 是指&#xff09; A 1.1.2 背景引入&#xff08;随着、近年来、在……大背景 / 环境下&#…