2023年高教社杯数学建模思路 - 案例:最短时间生产计划安排

文章目录

  • 0 赛题思路
  • 1 模型描述
  • 2 实例
    • 2.1 问题描述
    • 2.2 数学模型
      • 2.2.1 模型流程
          • 2.2.2 符号约定
          • 2.2.3 求解模型
    • 2.3 相关代码
    • 2.4 模型求解结果
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

最短时间生产计划模型

该模型出现在好几个竞赛赛题上,预测2023今年国赛也会与该模型相关。

1 模型描述

离散系统仿真在工业生产的工序安排中起到了相当重要的作用,如何就一些内部机制复杂的离散问题建立简单易行、可监测性强的数学模型一直是仿真技术的研究热点.

离散事件系统现有三种仿真建模策略,即:

  • 事件调度法
  • 活动扫描法
  • 进程交互法.

该模型demo学长采用了其中的活动扫描法对生产中的一个实际例子进行了处理.

活动扫描法对于各事件之间相关性很强的系统有着很好的适用性.

2 实例

2.1 问题描述

在许多工厂生产过程中,由于设备的数量、产品加工的次序限制,往往不能简单地安排生产任务.我们设想,应用强大的数学软件配合简单易行的方法进行安排.

设某重型机械厂产品都是单件性的,其中有一车间共有4种不同设备,现接受6件产品的加工任务,每件产品接受的程序在指定的设备上加工,其工序与加工周期如下表

在这里插入图片描述
现在我们根据这一实际问题,寻求安排的方法.

要求:

1、每件产品必须按规定的工序加工,不得颠倒.

2、每台设备在同一时间只能担任一项任务(每件产品的每个工序为一个任务).

3、在尽可能短的时间里,完成所接受的全部任务.

为了节省电能,合理分配生产任务,厂方还要求:

1、做出每件产品的每个工序开工、完工时间表.

2、给出每台设备承担任务的时间表.

2.2 数学模型

2.2.1 模型流程

在这里插入图片描述

2.2.2 符号约定

在这里插入图片描述

2.2.3 求解模型

在这里插入图片描述在这里插入图片描述在这里插入图片描述

2.3 相关代码

clear
clc
seq=[3 1 2 3 4 0 0 0                     %各产品加工时所用的设备的次序1 4 2 3 0 0 0 03 4 1 2 1 0 0 02 3 4 1 4 3 0 04 2 3 4 1 3 4 01 2 1 3 4 1 3 1];tim=[8 2 4 24 6 0 0 0                   %加工对应使用的时间4 5 3 4 0 0 0 03 7 15 20 8 0 0 07 6 21 1 16 3 0 010 4 8 4 12 6 1 01 4 7 3 5 2 5 8];
whole=[0 0 0 0];
for i=1:6for j=1:8if(seq(i,j)~=0)whole(seq(i,j))=whole(seq(i,j))+tim(i,j);endend
end
whole                          %生产各件产品所需的总时间mes=cell(4,1);                   %记录各个设备的工作时间(对应于上面tim的位置)
for k=1:4mes{k,1}=zeros(6,8);for j=1:8for i=1:6if(seq(i,j)==k)mes{k,1}(i,j)=tim(i,j);elsemes{k,1}(i,j)=100;endendend
endturn=cell(5,100);               %记录四个设备的开关时间及加工对象(on(i)for i=1:4for j=1:100turn{i,j}='off';end
end
for i=1:100turn{5,i}=[num2str(i) '分'];
endopen=zeros(6,8);           
%记录6个产品的加工进度,0表示未进行,1表示已开始(或已结束),2表示可选,3表示没有这个程序
for i=1:6open(i,1)=2;
end
for i=1:6for j=1:8if seq(i,j)==0open(i,j)=3;endend
endgongxu=zeros(6,1);
dai=zeros(4,1);
j=1;
s=[1	1	1	1	1	3	3	3
1	1	1	1	3	3	3	3
1	1	1	1	1	3	3	3
1	1	1	1	1	1	3	3
1	1	1	1	1	1	1	3
1	1	1	1	1	1	1	1];
while isequal(open,s)==0on=[];for i=1:4if turn{i,j}=='off'  
%在turn矩阵中逐列搜索,若设备处于关机状态,则作记录(可用)on=[on i];endendl1=length(on);for m=1:l1          %在整个生产计划中(对设备逐个)寻找能够选作操作的步骤[x,y]=find(open==2);l2=length(x);a=[x(1) y(1)];for k=1:l2   %对某个设备on(m),找出当前它能操作的步骤中耗时最小的一个if mes{on(m)}(a(1),a(2))>mes{on(m)}(x(k),y(k))a=[x(k) y(k)];endendif turn{on(m),j}=='off' & mes{on(m)}(a(1),a(2))~=100 
%若时间为100则意味着这个步骤不属于我们希望使用的那件设备while tim(a(1),a(2))>0turn{on(m),tim(a(1),a(2))+j-1}=a(1);tim(a(1),a(2))=tim(a(1),a(2))-1;endendendfor i=1:4if turn{i,j}~='off'dai(i)=turn{i,j};endendfor i=1:4if turn{i,j}~='off' & turn{i,j+1}=='off'gongxu(turn{i,j})=gongxu(turn{i,j})+1;open(turn{i,j},gongxu(turn{i,j}))=1;endif gongxu(dai(i))<8 & open(dai(i),gongxu(dai(i))+1)~=3 & turn{i,j+1}=='off'open(dai(i),gongxu(dai(i))+1)=2;endendj=j+1;
end

2.4 模型求解结果

每件产品的每个工序开工、完工时间表

在这里插入图片描述
每台设备承担任务的时间表

在这里插入图片描述
从结果中我们可以看到,使用这种方法,只需78个单位时间就可以完成所有的工序.而我们同时也可以在论文的开始部分看到,单就完成 就需耗费75个单位时间.可见这种方法得出的结果还是相当使人满意的,而且操作简单,可监测性强.

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/64806.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据分析作业2

中国在 2020 年开展第七次全国人口普查&#xff0c;截止 2021 年 5 月 11 日普查结果公布&#xff0c;全国人口共1411778724人。单从数据表格看相关数据不够直观&#xff0c;需要进行数据可视化展示&#xff0c;方便查看数据结果。 任务一&#xff1a;链接 MySQL 数据库&#x…

npm报错sass

1.删除node模块 2.删除node-sass&#xff1a; npm uninstall node-sass 3.重新下载对应版本node-sass&#xff1a; npm i node-sass7.0.3&#xff08;指定版本 控制台报错什么版本就写什么版本&#xff09; 4.再运行项目 或者

jdk-8u371-linux-x64.tar.gz jdk-8u371-windows-x64.exe 【jdk-8u371】 全平台下载

jdk-8u371 全平台下载 jdk-8u371-windows-x64.exejdk-8u371-linux-x64.rpmjdk-8u371-linux-x64.tar.gzjdk-8u371-macosx-x64.dmgjdk-8u371-linux-aarch64.tar.gz 下载地址 迅雷云盘 链接&#xff1a;https://pan.xunlei.com/s/VNdLL3FtCnh45nIBHulh_MDjA1?pwdw4s6 百度…

基于Matlab实现生活中的图像信号分类(附上源码+数据集)

在我们的日常生活中&#xff0c;我们经常会遇到各种各样的图像信号&#xff0c;例如照片、视频、图标等等。对这些图像信号进行分类和识别对于我们来说是非常有用的。在本文中&#xff0c;我将介绍如何使用Matlab来实现生活中的图像信号分类。 文章目录 介绍源码数据集下载 介…

什么是伪类链(Pseudo-class Chaining)?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ Pseudo-class Chaining⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚…

(十九)大数据实战——Flume数据采集框架安装部署

前言 本节内容我们主要介绍一下大数据数据采集框架flume的安装部署&#xff0c;Flume 是一款流行的开源分布式系统&#xff0c;用于高效地采集、汇总和传输大规模数据。它主要用于处理大量产生的日志数据和事件流。Flume 支持从各种数据源&#xff08;如日志文件、消息队列、数…

【计算机硬件CPU】

【计算机硬件CPU】 1、计算机硬件的五大单元2、一切设计的起点&#xff1a; CPU 的架构3、精简指令集 &#xff08;Reduced Instruction Set Computer, RISC&#xff09;4、复杂指令集&#xff08;Complex Instruction Set Computer, CISC&#xff09;5、例题&#xff1a;最新的…

Vue框架--Vue中el和data的两种写法

data与el的2种写法 1.el有2种写法 (1).new Vue时候配置el属性。 (2).先创建Vue实例&#xff0c;随后再通过vm.$mount(#root)指定el的值。 2.data有2种写法 (1).对象式 (2).函数式 如何选择&#xff1a;目前哪种写法都可以&#xff0c;以后学习到组件时&#xff…

一些测试知识

希望能起到帮助&#xff0c;博主主页&#xff1a; https://blog.csdn.net/qq_57785602/category_12023254.html?spm1001.2014.3001.5482 软件测试理论 测试的依据&#xff1a; 需求&#xff0c;规格说明&#xff0c;模型&#xff0c;用户需求等 什么是软件测试 描述一种来…

Python Opencv实践 - 矩形轮廓绘制(直边矩形,最小外接矩形)

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/stars.png") plt.imshow(img[:,:,::-1])img_gray cv.cvtColor(img, cv.COLOR_BGR2GRAY) #通过cv.threshold转换为二值图 ret,thresh cv.threshold(img_gray,…

手写Mybatis:第5章-数据源的解析、创建和使用

文章目录 一、目标&#xff1a;数据源的解析、创建和使用二、设计&#xff1a;数据源的解析、创建和使用三、实现&#xff1a;数据源的解析、创建和使用3.1 引入依赖3.2 工程结构3.3 数据源解析、创建和使用关系图3.4 事务管理接口和事务工厂3.4.1 事务的隔离级别3.4.2 定义事务…

配置环境变量的作用

配置环境变量的作用 一般运行过程&#xff1a;寻找QQ.exe所在的目录&#xff0c;输入QQ.exe配置环境变量&#xff1a;把QQ所在的路径配给操作系统Path&#xff0c; 在任何路径下都能运行QQ.exe 举例&#xff1a; 定义变量&#xff1a;SCALA_HOME SCALA_HOME、JAVA_HOME 等这…

【论文精读】Learning Transferable Visual Models From Natural Language Supervision

Learning Transferable Visual Models From Natural Language Supervision 前言Abstract1. Introduction and Motivating Work2. Approach2.1. Creating a Sufficiently Large Dataset2.2. Selecting an Efficient Pre-Training Method2.3. Choosing and Scaling a Model2.4. P…

基于STM32的ADC采样及各式滤波实现(HAL库,含VOFA+教程)

前言&#xff1a;本文为手把手教学ADC采样及各式滤波算法的教程&#xff0c;本教程的MCU采用STM32F103ZET6。以HAL库的ADC采样函数为基础进行教学&#xff0c;通过各式常见滤波的实验结果进行分析对比&#xff0c;搭配VOFA工具直观的展示滤波效果。ADC与滤波算法都是嵌入式较为…

【FreeRTOS】信号量的相关函数使用及示例解释

FreeRTOS中的信号量是一种用于任务间同步的机制。它可以用来实现任务之间的互斥访问共享资源或者等待某个事件发生。 文章目录 信号量类型1. 二进制信号量&#xff08;Binary Semaphore&#xff09;&#xff1a;2. 计数信号量&#xff08;Counting Semaphore&#xff09;&…

python in excel 如何尝鲜 有手就行

众所周知&#xff0c;微软在8月下旬放出消息python已入驻excel&#xff0c;可到底怎么实现呢。 今天我就将发布python in excel的保姆级教程&#xff0c;开始吧&#xff01; 获取office 365 账号 首先我们要有微软office365 这时候需要再万能的某宝去找一个账号&#xff0c;…

Android JNI系列详解之ndk-build工具的使用

一、Android项目中使用ndk-build工具编译库文件 之前介绍过CMake编译工具的使用&#xff0c;今天介绍一种ndk自带的编译工具ndk-build的使用。 ndk-build目前主要有两种配置使用方式&#xff1a; 如上图所示&#xff0c;第一种方式是Android.mkApplication.mkgradle的方式生成…

5.Redis-string

string 字符串 字符串类型是 Redis 最基础的数据类型&#xff0c;关于字符串需要特别注意&#xff1a; 1.⾸先Redis中所有 key 的类型都是字符串类型&#xff0c;⽽且其他⼏种数据结构也都是在字符串类似基础上构建的&#xff0c;例如 list 和 set 的元素类型是字符串类型。 2…

Web_单一视频文件mp4转换为m3u分段ts文件实现边下边播

一、下载ffmpeg: Builds - CODEX FFMPEG @ gyan.dev 二、转换视频文件: 先解压缩,会看到如下结构: 进入bin目录,把需要转换的视频文件复制过来,同时新建一个文件夹用来存放转换后的文件,然后按住Shift键同时单击鼠标右键,选择打开Powershell窗口: 输入以下命令(根据…

【管理运筹学】第 7 章 | 图与网络分析(1,图论背景以及基本概念、术语)

文章目录 引言一、图与网络的基本知识1.1 图与网络的基本概念1.1.1 图的定义1.1.2 图中相关术语1.1.3 一些特殊图类1.1.4 图的运算 写在最后 引言 按照正常进度应该学习动态规划了&#xff0c;但我想换换口味&#xff0c;而且动态规划听说也有一定难度&#xff0c;还不一定会考…