无限学模式-“重塑科研学习路径:ChatGPT应用实战课,开启高效率、高创新的科研之旅!“

ChatGPT 在论文写作与编程方面也具备强大的能力。无论是进行代码生成、错误调试还是解决编程难题,ChatGPT都能为您提供实用且高质量的建议和指导,提高编程效率和准确性。此外,ChatGPT是一位出色的合作伙伴,可以为您提供论文写作的支持。它可以为您提供论文结构指导、段落重组建议,甚至是对论文内容的进一步拓展和丰富。利用ChatGPT的写作能力,您可以更好地组织思路、提升论文的逻辑性和质量。 

靳老师:18031211455

第一章、2024年AI领域最新技术

1.OpenAI新模型-GPT-5

2.谷歌新模型-Gemini Ultra

3.Meta新模型-LLama3

4.科大讯飞-星火认知

5.百度-文心一言

6.MoonshotAI-Kimi

7.智谱AI-GLM-4

图片

第二章、OpenAI开发者大会后GPT最新技术

1.最新大模型GPT-4 Turbo详细介绍

2.最新发布的高级数据分析,AI画图,图像识别,文档API介绍

3.GPT Store介绍

4.(实操演练)从0到1创建自己的GPT应用

第三章、谷歌最新模型Gemini详解

1.Gemini三大模型

2.Gemini与GPT-4对比

3.Gemini的原生多模态技术

4.Gemini的测试效果

5.(实操演练)Gemini的使用

图片

第四章定制自己的GPTs

1.(实操演练)热门的自定义GPTs使用介绍

2.(实操演练)通过聊天交流的方式制作自己的GPTs

3.(实操演练)通过自定义的方式制作自己的GPTs

4.(实操演练)GPTs的3种分发方式

5.(实操演练)GPTs的action功能介绍

6.(实操演练)论文改进专家(GTPs)

7.(实操演练)3种论文写作应用(GTPs)

第五章、AIGC基础学习

1.深度学习常用架构讲解

2.GPT1-4模型解析

3.AIGC技术发展

4.大语言模型的评估标准

5.ChatGPT/GPT4官网使用方法

6.优秀国内大模型推荐

7.LLM与搜索引擎:差异与联系

图片

第六章、提示词工程高级技巧

1.提示词工程讲解

2.如何写好一篇论文的提示词

3.(实操演练)初识LLM:角色扮演的艺术

4.(实操演练)调整LLM的语调与表达方式

5.(实操演练)定义LLM的具体任务与目标

6.(实操演练)探索LLM与上下文的密切关系

7.(实操演练)零样本学习:强化逻辑推理

8.(实操演练)多样本学习:模型模仿能力提升

9.(实操演练)自洽性检验:数学能力加强

10.(实操演练)知识生成:提高模型的信息处理能力

图片

第七章、ChatGPT/GPT4的实用案例

1.(实操演练)ChatGPT/GPT4是最好用的翻译软件

2.(实操演练)AI助力高效表格数据创建

3.(实操演练)AI在数据处理中的实际操作

4.(实操演练)苏格拉底式教学法在AI中的运用

5.(实操演练)如何与AI交流科研问题

6.(实操演练)AI助力文本数据整理与分析

7.(实操演练)AI在用户评论分析中的应用

8.(实操演练)AI撰写专业报告的技巧

9.(实操演练)让AI根据知识点出题

10.(实操演练)使用AI工具快速产出高端PPT的几种方法

11.(实操演练)使用AI工具快速产出短视频

12.(实操演练)快速制作流程图、序列图、思维导图

图片

图片

图片

第八章、让ChatGPT/GPT4成为你的论文助手

1.(实操演练)论文搜索和论文关联

2.(实操演练)分析论文得出审稿意见

3.(实操演练)进行论文内容问答

4.(实操演练)生成论文摘要

5.(实操演练)写论文综述并标注内容来源

6.(实操演练)中/英文论文润色的4种方法

7.(实操演练)进行论文降重的技巧

8.(实操演练)查找某个观点或内容相关的论文

9.(实操演练)对多篇论文进行分析对比

10.(实操演练)如何防止AI生成的内容被检测

11.(实操演练)生成完整长篇论文的技巧

12.(实操演练)让AI结合试验数据进行写作

13.(实操演练)自动写作并添加参考文献

图片

图片

第九章、Python基础学习

1.Python的应用场景

2.(实操演练)python环境安装配置

3.(实操演练)print使用

4.(实操演练)运算符和变量

5.(实操演练)循环

6.(实操演练)列表元组字典

7.(实操演练)if条件

8.(实操演练)函数

9.(实操演练)模块

10.(实操演练)类的使用

11.(实操演练)文件读写

12.(实操演练)异常处理

图片

第十章、科学计算模块Numpy和绘图模块Matplotlib学习

1.(实操演练)numpy的属性

2.(实操演练)创建array

3.(实操演练)numpy的运算

4.(实操演练)随机数生成以及矩阵的运算

5.(实操演练)numpy的索引

6.(实操演练)array合并

7.(实操演练)Matplotlib基础用法

8.(实操演练)figure图像

9.(实操演练)设置坐标轴

10.(实操演练)legend图例

11.(实操演练)scatter散点图

图片

第十一章、机器学习算法应用

1.机器学习概述

2.训练集/验证集/测试集

3.监督学习与无监督学习

4.分类/回归/聚类算法

5.机器学习算法应用分析

6.(实操演练)使用回归算法完成波士顿房价预测

7.(实操演练)使用KNN算法完成鸢尾花分类

8.(实操演练)使用多种算法完成糖尿病预测

9.(实操演练)分析特征重要性(哪些特征对标签的影响最大)

10.(实操演练)机器学习特征工程完整流程

图片

第十二章、深度学习算法基础

1.单层感知器

2.激活函数,损失函数和梯度下降法

3.BP算法介绍

4.梯度消失问题

5.多种激活函数介绍

6.(实操演练)BP算法解决手写数字识别问题

图片

第十三章、深度学习框架Tensorflow应用

1.(实操演练)Mnist数据集和softmax讲解

2.(实操演练)使用BP神经网络识别图片

3.(实操演练)交叉熵(cross-entropy)讲解和使用

4.(实操演练)欠拟合/正确拟合/过拟合

5.(实操演练)各种优化器Optimizer

6.(实操演练)模型保存和模型载入方法

图片

第十四章、深度学习算法-卷积神经网络CNN应用

1.CNN卷积神经网络

2.卷积的局部感受野,权值共享介绍。

3.卷积的具体计算方式

4.池化层介绍(均值池化、最大池化)

5.same padding和valid padding介绍

6.LeNET-5卷积网络介绍

7.(实操演练)CNN手写数字识别案例

图片

第十五章、深度学习算法-长短时记忆网络LSTM应用

1.RNN循环神经网络介绍

2.RNN具体计算分析

3.长短时记忆网络LSTM介绍

4.输入门,遗忘门,输出门具体计算分析

5.堆叠LSTM介绍

6.双向LSTM介绍

7.(实操演练)使用LSTM进行设备故障预测

图片

第十六章、基于深度学习模型的图像识别(医学影像案例)

1.VGG16模型详解

2.ResNet模型详解

3.EfficientNet模型详解

4.(实操演练)下载训练好的1000分类图像识别模型

5.(实操演练)使用训练好的图像识别模型进行各种图像分类

6.(实操演练)使用迁移学习训练医学影像分类模型

图片

第十七章、让ChatGPT/GPT4成为你的编程助手

1.使用ChatGPT/GPT4写程序的注意事项

2.(实操演练)让AI对代码进行详细讲解

3.(实操演练)进行代码纠错及自动修改

4.(实操演练)使用AI工具读取本地数据的技巧

5.(实操演练)绘制折线图,柱状图,饼图等各种统计分析图表

6.(实操演练)让AI工具帮你自动进行数据分析和特征工程

7.(实操演练)使用你的数据产生机器学习模型进行分类预测

8.(实操演练)根据你的数据产生深度学习模型进行回归预测

9.(实操演练)自动化AI编程助手的使用

图片

第十八章、让ChatGPT/GPT4进行数据处理

1.(实操演练)让AI正确读取表格数据

2.(实操演练)让AI理解百万行数据

3.(实操演练)使用AI进行数据可视化

4.(实操演练)使用AI进行数据缺失值处理

5.(实操演练)使用AI进行数据归一化

6.(实操演练)使用AI进行特征筛选

7.(实操演练)使用AI输出表格数据

8.(实操演练)使用AI输出特征工程处理后的数据

9.(实操演练)使用AI绘制统计分析图表

第十九章、ChatGPT/GPT4在地球科学方面的应用

1.(实操演练)用GPT绘制世界地图海岸线

2.(实操演练)用GPT绘制不同的地图投影

3.(实操演练)用GPT绘制南极地投影

4.(实操演练)用GPT绘制地球各种关键变量的图

5.(实操演练)用GPT绘制台风总降水量图

6.(实操演练)用GPT绘制台风风速图

7.(实操演练)用GPT计算台风总降水量

8.(课实操演练)用GPT对遥感图像光谱数据进行机器学习建模分类

图片

图片

第二十章、ChatGPT/GPT4接口程序开发

1.(实操演练)GPT模型API接口程序使用

2.(实操演练)GPT模型参数调节

3.(实操演练)用GPT程序API接口制作聊天机器人

4.(实操演练)用GPT程序API接口制作自动订餐机器人

5.(实操演练)用GPT程序API批量处理大量文本数据

6.(实操演练)用DALLE-3程序API接口生成图片

图片

图片

第二十一章、GPT4的特殊功能应用

1.(实操演练)识别图片中的表格并保存

2.(实操演练)识别图片中的公式并进行编辑

3.(实操演练)论文中的公式讲解

4.(实操演练)模仿别人的统计图表画出类似的统计图

5.(实操演练)GPT4联网功能使用

6.(实操演练)学生压力与心理状况数据统计分析

7.(实操演练)GPT高级数据分析功能详解

8.(实操演练)GPT4本地文件上传功能使用

第二十二章、AI绘图工具Midjourney和DALLE3应用

1. AI画图原理讲解

2.(实操演练)Midjourney工具的基础操作

3.(实操演练)remix模式介绍

4.(实操演练)blend命令介绍

5.(实操演练)describe命令介绍

6.(实操演练)图生图通过图片生成新的图片

7.(实操演练)Midjourney的参数和设置介绍

8.(实操演练)Midjourney科研作图技巧

9.(实操演练)DALL-E 3模型介绍

10.(实操演练)DALL-E 3根据上下文内容修改图片

11.(实操演练)DALL-E 3在图像中生成特定文字

12.(实操演练)DALL-E 3绘图结果的不断优化

图片

第二十三章、AI绘图工具Stable Diffusion基础应用

1.(实操演练)Stable Diffusion工具讲解

2.(实操演练)Stable Diffusion环境部署介绍

3.(实操演练)通过文字生成图片

4.(实操演练)通过图片生成图片

5.(实操演练)图像智能高清算法

6.(实操演练)使用Lora模型产生写实人物图像

7.(实操演练)进行图像的局部重绘

8.(实操演练)Controlnet插件介绍

9.(实操演练)使用线稿图生成装修和建筑

10.(实操演练)使用线稿图给图片上色

11.(实操演练)产生特定姿态的人物图像

图片

图片

关注科研技术平台获取更多资源 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/646618.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【研0日记】24.01.25

回家倒数第6天 受不了了,不想写了,这群b怎么这么能写 用latex写了个伪代码,有点好玩 \usepackage[ruled,linesnumbered]{algorithm2e} \begin{algorithm}[ht] \caption{Pipeline of Kernel Iteration in K-Net.} \label{alg:alg1} …

在Java中如何优雅使用正则表达式?

在Java中如何优雅使用正则表达式? 一、正则表达式的基本概念与用途 1.1 正则表达式的简介 正则表达式,又称规则表达式。(英语:Regular Expression,在代码中常简写为regex、regexp或RE),是计算…

深入理解badblocks

文章目录 一、概述二、安装2.1、源码编译安装2.2、命令行安装2.3、安装确认 三、重要参数详解3.1、查询支持的参数3.2、参数说明 四、实例4.1、全面扫描4.2、破坏性写入并修复4.3、非破坏性写入测试 五、实现原理六、注意事项 团队博客: 汽车电子社区 一、概述 badblocks命令是…

代码随想录算法训练营第十六天|104.二叉树的最大深度、111.二叉树的最小深度、222.完全二叉树的节点个数

104.二叉树的最大深度 思路:这道题最开始的时候,我想的是用前序遍历的思路来做,整个过程有剪枝的过程,弄了半天没写出来,主要是剪枝没写对!最大深度是叶子节点的高度,可以使用后序遍历来做。 cl…

el-table 动态渲染多级表头;一级表头根据数据动态生成,二级表头固定

一、表格需求: 实现一个动态表头,一级表头,根据数据动态生成,二级表头固定,每列的数据不一样,难点在于数据的处理。做这种表头需要两组数据,一组数据是实现表头的,另一组数据是内容…

Web网页生成桌面应用

前言:网页生成桌面指的是将一个网页保存为桌面应用程序的形式,使得用户可以在桌面上直接打开该网页,而不必通过浏览器打开。这种桌面应用程序一般具有独立的窗口、菜单、工具栏等界面元素,能够提供更加方便快捷的使用体验。 实现…

【pytorch】pytorch学习笔记(续1)

p22:1.加减乘除: (1)add(a,b):等同于ab。 (2)sub(a,b):等同于a-b。 (3)mul(a,b):等同于a*b。 (4)div(a,b)&#xff1a…

PID控制算法,带C语言源码实现

1 PID简介 PID即:Proportional(比例)、Integral(积分)、Differential(微分)的缩写。PID控制算法是结合比例、积分和微分三种环节于一体的控制算法。PID算法是连续系统中技术最为成熟、应用最为…

gitlab runner 安装、注册、配置、使用(Docker部署)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

【工具使用-Everything】everything只能搜到文件夹,无法搜到文件

一,问题现象 everything搜索时,只能搜索到文件夹,无法搜索到文件夹下的文件。 二,问题原因 everything搜索设置问题,设置为"文件夹"导致 三,解决方法 将搜索选项设置为“所有”即可&#x…

5 新增课程

5.1 需求分析 5.1.1 业务流程 根据前边对内容管理模块的数据模型分析,课程相关的信息有:课程基本信息、课程营销信息、课程图片信息、课程计划、课程师资信息,所以新增一门课程需要完成这几部分信息的填写。 以下是业务流程: …

全链路压测:提升业务可靠性和可用性

全链路压测是一种全面评估系统性能和稳定性的测试方法,通过模拟真实用户场景和流程来验证整个应用系统在高负载情况下的表现。全链路压测的主要作用涵盖了多个方面: 性能评估与优化: 全链路压测可以全面评估系统在高负载下的性能表现&#xf…

代码评审——随机数Random问题

问题描述: 为了获取唯一值,经常会依赖产生随机数来保证唯一性。在获取随机数时,如果使用错误的方法,会比较低效。 可以参考以下代码: public static String geneRundomNo(){Random rnew Random();int numr.nextInt(…

day31_CSS

今日内容 CSS概述引入方式 (where)选择器(how)属性(how) 1 CSS介绍 层叠样式表(cascading style sheet) CSS 用来美化HTML页面,可以让页面更好看,还可以布局页面. 好处 美化页面,布局页面使用外部css文件,可以实现样式文件和html文件分离,便于维护使用外…

5.ROC-AUC机器学习模型性能的常用的评估指标

最近回顾机器学习基础知识部分的时候,看到了用于评估机器学习模型性能的ROC曲线。再次记录一下,想起之前学习的时候的茫然,希望这次可以更加清晰的了解这一指标。上课的时候听老师提起过,当时没有认真去看,所以这次可以…

SpeechGPT-Gen;使用Agents编辑图像;多模态扩散模型图像生成

本文首发于公众号:机器感知 SpeechGPT-Gen;使用Agents编辑图像;多模态扩散模型图像生成; CCA: Collaborative Competitive Agents for Image Editing This paper presents a novel generative model, Collaborative Competitive…

多流转换 (分流,合流,基于时间的合流——双流联结 )

目录 一,分流 1.实现分流 2.使用侧输出流 二,合流 1,联合 2,连接 三,基于时间的合流——双流联结 1,窗口联结 1.1 窗口联结的调用 1.2 窗口联结的处理流程 2,间隔联结 2.1 间隔联…

<网络安全>《2 国内主要企业网络安全公司概览(二)》

4 北京天融信科技有限公司(简称天融信) 信息内容LOGO成立日期创始于1995年总部北京市海淀区上地东路1号院3号楼北侧301室背景民营企业是否上市天融信[002212]A股市值99亿主要产品网络安全大数据云服务员工规模6000多人简介天融信科技集团(证券代码:0022…

书生·浦语大模型实战营-学习笔记6

目录 OpenCompass大模型测评1. 关于评测1.1 为什么要评测?1.2 需要评测什么?1.3 如何评测?1.3.1 客观评测1.3.2 主观评测1.3.3 提示词工程评测 2. 介绍OpenCompass工具3. 实战演示 OpenCompass大模型测评 1. 关于评测 1.1 为什么要评测&#…

人工智能系列 :与机器共生的未来

大家好,身处一个日新月异的时代,科技的浪潮汹涌而至,将人们推向未知的前方,一个充满人工智能与机器的世界。 这个未知的境地,或许令人心生恐慌,因为它的庞大未知性仿佛一团迷雾,模糊了大家的视…