重点:CMS,G1,ZGC
主要垃圾收集器如下,图中标出了它们的工作区域、垃圾收集算法,以及配合关系。
- Serial 收集器
Serial 收集器是最基础、历史最悠久的收集器。
如同它的名字(串行),它是一个单线程工作的收集器,使用一个处理器或一条收集线程去完成垃圾收集工作。并且进行垃圾收集时,必须暂停其他所有工作线程,直到垃圾收集结束——这就是所谓的“Stop The World”。
Serial/Serial Old 收集器的运行过程如图:
- ParNew
ParNew 收集器实质上是 Serial 收集器的多线程并行版本,使用多条线程进行垃圾收集。
ParNew/Serial Old 收集器运行示意图如下:
除了Serial收集器外,目前只有它能与CMS收集器配合工作。
CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作[1],所以在JDK 5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。ParNew收集器是激活CMS后(使用-XX:+UseConcMarkSweepGC选项)的默认新生代收集器,
- Parallel Scavenge
Parallel Scavenge 收集器是一款新生代收集器,基于标记-复制算法实现,也能够并行收集。和 ParNew 有些类似,但 Parallel Scavenge 主要关注的是垃圾收集的吞吐量——所谓吞吐量,就是 CPU 用于运行用户代码的时间和总消耗时间的比值,比值越大,说明垃圾收集的占比越小。
吞吐量
- Serial Old
Serial Old 是 Serial 收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。
- Parallel Old
Parallel Old 是 Parallel Scavenge 收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。
- CMS 收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,同样是老年代的收集器,采用标记-清除算法。
CMS 收集齐的垃圾收集分为四步:
- 初始标记(CMS initial mark):单线程运行,需要 Stop The World,标记 GC Roots 能直达的对象。
- 并发标记((CMS concurrent mark):无停顿,和用户线程同时运行,从 GC Roots 直达对象开始遍历整个对象图。
- 重新标记(CMS remark):多线程运行,需要 Stop The World,标记并发标记阶段产生对象。
- 并发清除(CMS concurrent sweep):无停顿,和用户线程同时运行,清理掉标记阶段标记的死亡的对象。
Concurrent Mark Sweep 收集器运行示意图如下:
三个明显的缺点:
- CMS收集器对处理器资源非常敏感。在并发阶段,它虽然不会导致用户线程停顿,但会因为占用了一部分线程而导致应用程序变慢,降低吞吐量,尤其是处理器核心数量少的时候。
- 由于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。CMS收集器在老年代使用了92%的空间后会被激活,但是要是CMS运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”,这个时候虚拟机只好冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集。
- CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。
- 若分配对象时找不到连续的空间,就会触发一次Full GC,为了解决这个问题,CMS提供了一个个-XX:+UseCMS-CompactAtFullCollection开关参数(默认是开启的,此参数从JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。
- Garbage First 收集器
Garbage First(简称 G1)收集器是垃圾收集器的一个颠覆性的产物,它开创了局部收集的设计思路和基于 Region 的内存布局形式。
虽然 G1 也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异。以前的收集器分代是划分新生代、老年代、持久代等。
G1 把连续的 Java 堆划分为多个大小相等的独立区域(Region),每一个 Region 都可以根据需要,扮演新生代的 Eden 空间、Survivor 空间,或者老年代空间。收集器能够对扮演不同角色的 Region 采用不同的策略去处理。
这样就避免了收集整个堆,而是按照若干个 Region 集进行收集,同时维护一个优先级列表,跟踪各个 Region 回收的“价值,优先收集价值高的 Region。
G1 收集器的运行过程大致可划分为以下四个步骤:
- 初始标记(initial mark),标记了从 GC Root 开始直接关联可达的对象。STW(Stop the World)执行。
- 并发标记(concurrent marking),和用户线程并发执行,从 GC Root 开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象、
- 最终标记(Remark),STW,标记再并发标记过程中产生的垃圾。
- 筛选回收(Live Data Counting And Evacuation),制定回收计划,选择多个 Region 构成回收集,把回收集中 Region 的存活对象复制到空的 Region 中,再清理掉整个旧 Region 的全部空间。需要 STW。