【Linux】Linux进程信号(下)

在这里插入图片描述

​📝个人主页:@Sherry的成长之路
🏠学习社区:Sherry的成长之路(个人社区)
📖专栏链接:Linux
🎯长路漫漫浩浩,万事皆有期待

上一篇博客:【Linux】Linux进程信号(上)

文章目录

  • 阻塞信号
    • 信号其他相关常见概念
    • 在内核中的表示
    • sigset_t
    • 信号集操作函数
    • sigprocmask
    • sigpending
  • 捕捉信号
    • 内核空间与用户空间
    • 内核态与用户态
    • 内核如何实现信号的捕捉
    • sigaction
  • 可重入函数
  • volatile
  • SIGCHLD信号
  • 总结:

阻塞信号

信号其他相关常见概念

实际执行信号的处理动作,称为信号递达(Delivery)。
信号从产生到递达之间的状态,称为信号未决(pending)。
进程可以选择阻塞(Block)某个信号。
被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作。
需要注意的是,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后的一种处理动作。

在内核中的表示

信号在内核中的表示示意图如下:
在这里插入图片描述

每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。
SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会在改变处理动作之后再接触阻塞。
SIGQUIT信号未产生过,但一旦产生SIGQUIT信号,该信号将被阻塞,它的处理动作是用户自定义函数sighandler。如果在进程解除对某信号的阻塞之前,这种信号产生过多次,POSIX.1允许系统递达该信号一次或多次。Linux是这样实现的:普通信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里,这里只讨论普通信号。

总结一下:
在block位图中,比特位的位置代表某一个信号,比特位的内容代表该信号是否被阻塞。
在pending位图中,比特位的位置代表某一个信号,比特位的内容代表是否收到该信号。
handler表本质上是一个函数指针数组,数组的下标代表某一个信号,数组的内容代表该信号递达时的处理动作,处理动作包括默认、忽略以及自定义。
block、pending和handler这三张表的每一个位置是一一对应的。

sigset_t

根据信号在内核中的表示方法,每个信号的未决标志只有一个比特位,非0即1,如果不记录该信号产生了多少次,那么阻塞标志也只有一个比特位。

因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储。在我当前的云服务中,sigset_t类型的定义如下:(不同操作系统实现sigset_t的方案可能不同)

#define _SIGSET_NWORDS (1024 / (8 * sizeof (unsigned long int)))
typedef struct
{unsigned long int __val[_SIGSET_NWORDS];
} __sigset_t;typedef __sigset_t sigset_t;

sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态。

在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞。
在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。
阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。

信号集操作函数

sigset_t类型对于每种信号用一个bit表示“有效”或“无效”,至于这个类型内部如何存储这些bit则依赖于系统的实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_t变量,而不应该对它的内部数据做任何解释,比如用printf直接打印sigset_t变量是没有意义的。

#include <signal.h>int sigemptyset(sigset_t *set);int sigfillset(sigset_t *set);int sigaddset(sigset_t *set, int signum);int sigdelset(sigset_t *set, int signum);int sigismember(const sigset_t *set, int signum);  

函数解释:

sigemptyset函数:初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含任何有效信号。
sigfillset函数:初始化set所指向的信号集,使其中所有信号的对应bit置位,表示该信号集的有效信号包括系统支持的所有信号。
sigaddset函数:在set所指向的信号集中添加某种有效信号。
sigdelset函数:在set所指向的信号集中删除某种有效信号。
sigemptyset、sigfillset、sigaddset和sigdelset函数都是成功返回0,出错返回-1。
sigismember函数:判断在set所指向的信号集中是否包含某种信号,若包含则返回1,不包含则返回0,调用失败返回-1。

注意: 在使用sigset_t类型的变量之前,一定要调用sigemptyset或sigfillset做初始化,使信号处于确定的状态。

例如,我们可以按照如下方式使用这些函数。

#include <stdio.h>
#include <signal.h>int main()
{sigset_t s; //用户空间定义的变量sigemptyset(&s);sigfillset(&s);sigaddset(&s, SIGINT);sigdelset(&s, SIGINT);sigismember(&s, SIGINT);return 0;
}

注意: 代码中定义的sigset_t类型的变量s,与我们平常定义的变量一样都是在用户空间定义的变量,所以后面我们用信号集操作函数对变量s的操作实际上只是对用户空间的变量s做了修改,并不会影响进程的任何行为。因此,我们还需要通过系统调用,才能将变量s的数据设置进操作系统。

sigprocmask

sigprocmask函数可以用于读取或更改进程的信号屏蔽字(阻塞信号集),该函数的函数原型如下:

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

参数说明:

如果oset是非空指针,则读取进程当前的信号屏蔽字通过oset参数传出。
如果set是非空指针,则更改进程的信号屏蔽字,参数how指示如何更改。
如果oset和set都是非空指针,则先将原来的信号屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。

假设当前的信号屏蔽字为mask,下表说明了how参数的可选值及其含义:

在这里插入图片描述

返回值说明:

sigprocmask函数调用成功返回0,出错返回-1。
注意: 如果调用sigprocmask解除了对当前若干个未决信号的阻塞,则在sigprocmask函数返回前,至少将其中一个信号递达。

sigpending

sigpending函数可以用于读取进程的未决信号集,该函数的函数原型如下:

int sigpending(sigset_t *set);

sigpending函数读取当前进程的未决信号集,并通过set参数传出。该函数调用成功返回0,出错返回-1。

下面我们来做一个简单的实验

实验步骤如下:

先用上述的函数将2号信号进行屏蔽(阻塞)。
使用kill命令或组合按键向进程发送2号信号。
此时2号信号会一直被阻塞,并一直处于pending(未决)状态。
使用sigpending函数获取当前进程的pending信号集进行验证。

代码如下:

#include <stdio.h>
#include <unistd.h>
#include <signal.h>void printPending(sigset_t *pending)
{int i = 1;for (i = 1; i <= 31; i++){if (sigismember(pending, i)){printf("1 ");}else{printf("0 ");}}printf("\n");
}
int main()
{sigset_t set, oset;sigemptyset(&set);sigemptyset(&oset);sigaddset(&set, 2); //SIGINTsigprocmask(SIG_SETMASK, &set, &oset); //阻塞2号信号sigset_t pending;sigemptyset(&pending);while (1){sigpending(&pending); //获取pendingprintPending(&pending); //打印pending位图(1表示未决)sleep(1);}return 0;
}

可以看到,程序刚刚运行时,因为没有收到任何信号,所以此时该进程的pending表一直是全0,而当我们使用kill命令向该进程发送2号信号后,由于2号信号是阻塞的,因此2号信号一直处于未决状态,所以我们看到pending表中的第二个数字一直是1。
在这里插入图片描述

为了看到2号信号递达后pending表的变化,我们可以设置一段时间后,自动解除2号信号的阻塞状态,解除2号信号的阻塞状态后2号信号就会立即被递达。因为2号信号的默认处理动作是终止进程,所以为了看到2号信号递达后的pending表,我们可以将2号信号进行捕捉,让2号信号递达时执行我们所给的自定义动作。

#include <stdio.h>
#include <unistd.h>
#include <signal.h>void printPending(sigset_t *pending)
{int i = 1;for (i = 1; i <= 31; i++){if (sigismember(pending, i)){printf("1 ");}else{printf("0 ");}}printf("\n");
}
void handler(int signo)
{printf("handler signo:%d\n", signo);
}
int main()
{signal(2, handler);sigset_t set, oset;sigemptyset(&set);sigemptyset(&oset);sigaddset(&set, 2); //SIGINTsigprocmask(SIG_SETMASK, &set, &oset); //阻塞2号信号sigset_t pending;sigemptyset(&pending);int count = 0;while (1){sigpending(&pending); //获取pendingprintPending(&pending); //打印pending位图(1表示未决)sleep(1);count++;if (count == 20){sigprocmask(SIG_SETMASK, &oset, NULL); //恢复曾经的信号屏蔽字printf("恢复信号屏蔽字\n");}}return 0;
}

此时就可以看到,进程收到2号信号后,该信号在一段时间内处于未决状态,当解除2号信号的屏蔽后,2号信号就会立即递达,执行我们所给的自定义动作,而此时的pending表也变回了全0。
在这里插入图片描述

细节: 在解除2号信号后,2号信号的自定义动作是在打印“恢复信号屏蔽字”之前执行的。因为如果调用sigprocmask解除对当前若干个未决信号的阻塞,则在sigprocmask函数返回前,至少将其中一个信号递达。

捕捉信号

内核空间与用户空间

每一个进程都有自己的进程地址空间,该进程地址空间由内核空间和用户空间组成:

用户所写的代码和数据位于用户空间,通过用户级页表与物理内存之间建立映射关系。
内核空间存储的实际上是操作系统代码和数据,通过内核级页表与物理内存之间建立映射关系。
内核级页表是一个全局的页表,它用来维护操作系统的代码与进程之间的关系。因此,在每个进程的进程地址空间中,用户空间是属于当前进程的,每个进程看到的代码和数据是完全不同的,但内核空间所存放的都是操作系统的代码和数据,所有进程看到的都是一样的内容。
在这里插入图片描述

需要注意的是,虽然每个进程都能够看到操作系统,但并不意味着每个进程都能够随时对其进行访问。

如何理解进程切换?

在当前进程的进程地址空间中的内核空间,找到操作系统的代码和数据。
执行操作系统的代码,将当前进程的代码和数据剥离下来,并换上另一个进程的代码和数据。

注意: 当你访问用户空间时你必须处于用户态,当你访问内核空间时你必须处于内核态。

内核态与用户态

内核态与用户态:

内核态通常用来执行操作系统的代码,是一种权限非常高的状态。
用户态是一种用来执行普通用户代码的状态,是一种受监管的普通状态。

进程收到信号之后,并不是立即处理信号,而是在合适的时候,这里所说的合适的时候实际上就是指,从内核态切换回用户态的时候。

内核态和用户态之间是进行如何切换的?

从用户态切换为内核态通常有如下几种情况:

需要进行系统调用时。
当前进程的时间片到了,导致进程切换。
产生异常、中断、陷阱等。

与之相对应,从内核态切换为用户态有如下几种情况:

系统调用返回时。
进程切换完毕。
异常、中断、陷阱等处理完毕。

其中,由用户态切换为内核态我们称之为陷入内核。每当我们需要陷入内核的时,本质上是因为我们需要执行操作系统的代码,比如系统调用函数是由操作系统实现的,我们要进行系统调用就必须先由用户态切换为内核态。

内核如何实现信号的捕捉

当我们在执行主控制流程的时候,可能因为某些情况而陷入内核,当内核处理完毕准备返回用户态时,就需要进行信号pending的检查。(此时仍处于内核态,有权力查看当前进程的pending位图)

在查看pending位图时,如果发现有未决信号,并且该信号没有被阻塞,那么此时就需要该信号进行处理。

如果待处理信号的处理动作是默认或者忽略,则执行该信号的处理动作后清除对应的pending标志位,如果没有新的信号要递达,就直接返回用户态,从主控制流程中上次被中断的地方继续向下执行即可。
在这里插入图片描述

但如果待处理信号是自定义捕捉的,即该信号的处理动作是由用户提供的,那么处理该信号时就需要先返回用户态执行对应的自定义处理动作,执行完后再通过特殊的系统调用sigreturn再次陷入内核并清除对应的pending标志位,如果没有新的信号要递达,就直接返回用户态,继续执行主控制流程的代码。
在这里插入图片描述

注意: sighandler和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是两个独立的控制流程。

巧计

当待处理信号是自定义捕捉时的情况比较复杂,可以借助下图进行记忆:
在这里插入图片描述

其中,该图形与直线有几个交点就代表在这期间有几次状态切换,而箭头的方向就代表着此次状态切换的方向,图形中间的圆点就代表着检查pending表。

当识别到信号的处理动作是自定义时,能直接在内核态执行用户空间的代码吗?

理论上来说是可以的,因为内核态是一种权限非常高的状态,但是绝对不能这样设计。

如果允许在内核态直接执行用户空间的代码,那么用户就可以在代码中设计一些非法操作,比如清空数据库等,虽然在用户态时没有足够的权限做到清空数据库,但是如果是在内核态时执行了这种非法代码,那么数据库就真的被清空了,因为内核态是有足够权限清空数据库的。

也就是说,不能让操作系统直接去执行用户的代码,因为操作系统无法保证用户的代码是合法代码,即操作系统不信任任何用户。

sigaction

捕捉信号除了用前面用过的signal函数之外,我们还可以使用sigaction函数对信号进行捕捉,sigaction函数的函数原型如下:

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

sigaction函数可以读取和修改与指定信号相关联的处理动作,该函数调用成功返回0,出错返回-1。

参数说明:

signum代表指定信号的编号。
若act指针非空,则根据act修改该信号的处理动作。
若oldact指针非空,则通过oldact传出该信号原来的处理动作。
其中,参数act和oldact都是结构体指针变量,该结构体的定义如下:

struct sigaction {void(*sa_handler)(int);void(*sa_sigaction)(int, siginfo_t *, void *);sigset_t   sa_mask;int        sa_flags;void(*sa_restorer)(void);
};

结构体的第一个成员sa_handler:

将sa_handler赋值为常数SIG_IGN传给sigaction函数,表示忽略信号。
将sa_handler赋值为常数SIG_DFL传给sigaction函数,表示执行系统默认动作。
将sa_handler赋值为一个函数指针,表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函数。
注意: 所注册的信号处理函数的返回值为void,参数为int,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然这是一个回调函数,不是被main函数调用,而是被系统所调用。

结构体的第二个成员sa_sigaction:

sa_sigaction是实时信号的处理函数。

结构体的第三个成员sa_mask:

首先需要说明的是,当某个信号的处理函数被调用,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么它会被阻塞到当前处理结束为止。

如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时,自动恢复原来的信号屏蔽字。

结构体的第四个成员sa_flags:

sa_flags字段包含一些选项,这里直接将sa_flags设置为0即可。

结构体的第五个成员sa_restorer:

该参数没有使用。

例如,下面我们用sigaction函数对2号信号进行了捕捉,将2号信号的处理动作改为了自定义的打印动作,并在执行一次自定义动作后将2号信号的处理动作恢复为原来默认的处理动作。

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>struct sigaction act, oact;
void handler(int signo)
{printf("get a signal:%d\n", signo);sigaction(2, &oact, NULL);
}
int main()
{memset(&act, 0, sizeof(act));memset(&oact, 0, sizeof(oact));act.sa_handler = handler;act.sa_flags = 0;sigemptyset(&act.sa_mask);sigaction(2, &act, &oact);while (1){printf("I am a process...\n");sleep(1);}return 0;
}

运行代码后,第一次向进程发送2号信号,执行我们自定义的打印动作,当我们再次向进程发送2号信号,就执行该信号的默认处理动作了,即终止进程。

可重入函数

下面主函数中调用insert函数向链表中插入结点node1,某信号处理函数中也调用了insert函数向链表中插入结点node2,乍眼一看好像没什么问题。
在这里插入图片描述
下面我们来分析一下,对于下面这个链表。
在这里插入图片描述

1、首先,main函数中调用了insert函数,想将结点node1插入链表,但插入操作分为两步,刚做完第一步的时候,因为硬件中断使进程切换到内核,再次回到用户态之前检查到有信号待处理,于是切换到sighandler函数。
在这里插入图片描述

2、而sighandler函数中也调用了insert函数,将结点node2插入到了链表中,插入操作完成第一步后的情况如下:
在这里插入图片描述

3、当结点node2插入的两步操作都做完之后从sighandler返回内核态,此时链表的布局如下:
在这里插入图片描述

4、再次回到用户态就从main函数调用的insert函数中继续往下执行,即继续进行结点node1的插入操作。
在这里插入图片描述

最终结果是,main函数和sighandler函数先后向链表中插入了两个结点,但最后只有node1结点真正插入到了链表中,而node2结点就再也找不到了,造成了内存泄漏。

上述例子中,各函数执行的先后顺序如下:
在这里插入图片描述

像上例这样,insert函数被不同的控制流调用(main函数和sighandler函数使用不同的堆栈空间,它们之间不存在调用与被调用的关系,是两个独立的控制流程),有可能在第一次调用还没返回时就再次进入该函数,我们将这种现象称之为重入。

而insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数我们称之为不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称之为可重入(Reentrant)函数。

如果一个函数符合以下条件之一则是不可重入的:

调用了malloc或free,因为malloc也是用全局链表来管理堆的。
调用了标志I/O库函数,因为标准I/O库的很多实现都以不可重入的方式使用全局数据结构。

volatile

volatile是C语言的一个关键字,该关键字的作用是保持内存的可见性。

在下面的代码中,我们对2号信号进行了捕捉,当该进程收到2号信号时会将全局变量flag由0置1。也就是说,在进程收到2号信号之前,该进程会一直处于死循环状态,直到收到2号信号时将flag置1才能够正常退出。

#include <stdio.h>
#include <signal.h>int flag = 0;void handler(int signo)
{printf("get a signal:%d\n", signo);flag = 1;
}
int main()
{signal(2, handler);while (!flag);printf("Proc Normal Quit!\n");return 0;
}

运行结果如下:
在这里插入图片描述

该程序的运行过程好像都在我们的意料之中,但实际并非如此。代码中的main函数和handler函数是两个独立的执行流,而while循环是在main函数当中的,在编译器编译时只能检测到在main函数中对flag变量的使用。

此时编译器检测到在main函数中并没有对flag变量做修改操作,在编译器优化级别较高的时候,就有可能将flag设置进寄存器里面。
在这里插入图片描述

此时main函数在检测flag时只检测寄存器里面的值,而handler执行流只是将内存中flag的值置为1了,那么此时就算进程收到2号信号也不会跳出死循环。

在编译代码时携带-O3选项使得编译器的优化级别最高,此时再运行该代码,就算向进程发生2号信号,该进程也不会终止。
面对这种情况,我们就可以使用volatile关键字对flag变量进行修饰,告知编译器,对flag变量的任何操作都必须真实的在内存中进行,即保持了内存的可见性。

#include <stdio.h>
#include <signal.h>volatile int flag = 0;void handler(int signo)
{printf("get a signal:%d\n", signo);flag = 1;
}
int main()
{signal(2, handler);while (!flag);printf("Proc Normal Quit!\n");return 0;
}

此时就算我们编译代码时携带-O3选项,当进程收到2号信号将内存中的flag变量置1时,main函数执行流也能够检测到内存中flag变量的变化,进而跳出死循环正常退出。

SIGCHLD信号

为了避免出现僵尸进程,父进程需要使用wait或waitpid函数等待子进程结束,父进程可以阻塞等待子进程结束,也可以非阻塞地查询的是否有子进程结束等待清理,即轮询的方式。采用第一种方式,父进程阻塞就不能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一下,程序实现复杂。

其实,子进程在终止时会给父进程发生SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自定义SIGCHLD信号的处理动作,这样父进程就只需专心处理自己的工作,不必关心子进程了,子进程终止时会通知父进程,父进程在信号处理函数中调用wait或waitpid函数清理子进程即可。

例如,下面代码中对SIGCHLD信号进行了捕捉,并将在该信号的处理函数中调用了waitpid函数对子进程进行了清理。

#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/wait.h>void handler(int signo)
{printf("get a signal: %d\n", signo);int ret = 0;while ((ret = waitpid(-1, NULL, WNOHANG)) > 0){printf("wait child %d success\n", ret);}
}
int main()
{signal(SIGCHLD, handler);if (fork() == 0){//childprintf("child is running, begin dead: %d\n", getpid());sleep(3);exit(1);}//fatherwhile (1);return 0;
}

注意:

SIGCHLD属于普通信号,记录该信号的pending位只有一个,如果在同一时刻有多个子进程同时退出,那么在handler函数当中实际上只清理了一个子进程,因此在使用waitpid函数清理子进程时需要使用while不断进行清理。
使用waitpid函数时,需要设置WNOHANG选项,即非阻塞式等待,否则当所有子进程都已经清理完毕时,由于while循环,会再次调用waitpid函数,此时就会在这里阻塞住。
此时父进程就只需专心处理自己的工作,不必关心子进程了,子进程终止时父进程收到SIGCHLD信号,会自动进行该信号的自定义处理动作,进而对子进程进行清理。

在这里插入图片描述

事实上,由于UNIX的历史原因,要想不产生僵尸进程还有另外一种办法:父进程调用signal或sigaction函数将SIGCHLD信号的处理动作设置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用signal或sigaction函数自定义的忽略通常是没有区别的,但这是一个特列。此方法对于Linux可用,但不保证在其他UNIX系统上都可用。

例如,下面代码中调用signal函数将SIGCHLD信号的处理动作自定义为忽略。

#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>int main()
{signal(SIGCHLD, SIG_IGN);if (fork() == 0){//childprintf("child is running, child dead: %d\n", getpid());sleep(3);exit(1);}//fatherwhile (1);return 0;
}

此时子进程在终止时会自动被清理掉,不会产生僵尸进程,也不会通知父进程。
在这里插入图片描述

总结:

今天我们学习了Linux进程信号的相关知识,了解了阻塞信号、捕捉信号,可重入函数等 。接下来,我们将继续学习Linux的其他知识。希望我的文章和讲解能对大家的学习提供一些帮助。

当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/641682.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

独步IT界,开放API接口文档新标杆!

目录 1、简介 1.1 什么是API接口 1.2 为什么开放API接口 1.3 API接口的优势和应用领域 1.4 API接口的基本原则和设计准则 2、接口认证 2.1 认证方式和流程 2.2 API密钥的生成和管理 2.3 认证错误处理 3、接口调用 3.1 请求方法和URL规范 3.2 请求参数和格式 3.3 响…

遍历子网所有ip地址,寻找空闲ip

在cmd窗口下输入如下代码&#xff1a; for /l %i in (1,1,255) do ping -n 1 -w 60 10.183.27.%i | find "Reply" >> d:\pingall27.log 得到如下结果 上图中&#xff0c;有reply的代表该IP已经被占用。但是观察红框中 22-->25之间缺少23 24 则说明23/24 是…

ChatGPT到底好不好用?相比于搜索引擎的优势

在数字化时代&#xff0c;获取信息的方式正经历着翻天覆地的变化。搜索引擎曾经是我们获取信息的首选工具&#xff0c;但现在&#xff0c;随着人工智能技术的飞速发展&#xff0c;ChatGPT等智能聊天机器人正在逐渐改变我们搜索和处理信息的方式。那么&#xff0c;ChatGPT到底好…

宿舍安全用电监模块

学校宿舍安全用电监测模块是针对 0.4kV 以下的 TT、TN 系统设计的智能电力装置&#xff0c;具有单、三相交流电测量、四象限电能计量、谐波分析、开关量输入、继电器输出功能&#xff0c;以及 RS485 通讯或 GPRS 无线通讯功能&#xff0c;通过对配电回路的剩余电流、导线温度等…

理想架构的Doherty功率放大器理论与仿真

Doherty理论—理想架构的Doherty功率放大器理论与仿真 参考&#xff1a; 三路Doherty设计 01 射频基础知识–基础概念 ADS仿真工程文件链接&#xff1a;理想架构的Doherty功率放大器理论与仿真 目录 Doherty理论---理想架构的Doherty功率放大器理论与仿真0、Doherty架构的作用…

神经网络算法与逻辑回归:优势与差异

神经网络算法和逻辑回归都是预测模型中的重要工具&#xff0c;但它们在处理复杂和非线性问题时表现出不同的性能。本文将深入探讨神经网络算法相对于逻辑回归的优势&#xff0c;以及它们在不同场景下的适用性。 一、引言 神经网络算法和逻辑回归都是预测模型中的重要工具&…

Python - argparse模块

python中的argparse模块&#xff0c;用于命令后参数解析&#xff0c;方便测试&#xff0c;是python中自带的模块。 可以自动生成帮助文档&#xff0c;和使用手册。而且当用户在执行程序的时候&#xff0c;输入无效的参数时&#xff0c;会给出对应的错误信息。 使用方法&#…

贪吃蛇(C)

游戏背景&#xff1a;贪吃蛇是久负盛名的游戏&#xff0c;它也和俄罗斯⽅块&#xff0c;扫雷等游戏位列经典游戏的⾏列。 总&#xff1a; 游戏设计大纲&#xff1a; 使⽤C语⾔在Windows环境的控制台中模拟实现经典⼩游戏贪吃蛇。 实现的基本功能&#xff1a; 1、贪吃蛇地图绘制…

自己构建webpack+vue3+ts

先看看我的目录结构&#xff08;我全局使用TS&#xff09;&#xff1a; 一、安装配置webpack打包 安装esno npm install esnoesno 是基于 esbuild 的 TS/ESNext node 运行时,有了它&#xff0c;就可以直接通过esno *.ts的方式启动脚本&#xff0c;package.json中添加 type:…

echarts绘制饼图,部分数据隐藏指示线和文本,hover时隐藏指示线和文本的类别也不显示tooltip提示

option {tooltip: {trigger: item,formatter: (p) > {if (p.name) {return ${p.name}&#xff1a;${p.value}个;}},backgroundColor: #ffffff,textStyle: { color: #666666 } // 提示标签字体颜色},legend: {top: 5%,left: center},series: [{name: Access From,type: pie,…

【机组】指令控制模块实验的解密与实战

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《机组 | 模块单元实验》⏰诗赋清音&#xff1a;云生高巅梦远游&#xff0c; 星光点缀碧海愁。 山川深邃情难晤&#xff0c; 剑气凌云志自修。 ​ 目录 &#x1f33a;一、 实验目…

重叠柱状图做法,全程动图演示

最终效果&#xff1a; 具体步骤&#xff1a; 其他图形画法&#xff1a; 点线对比图做法&#xff0c;全程动图演示 气泡图做法&#xff0c;全程动图演示 重叠柱状图做法&#xff0c;全程动图演示 瀑布图做法&#xff0c;全程动图演示 对称图做法&#xff0c;全程动图演示

[Tomcat] [最全] 目录和文件详解

打开tomcat的解压之后的目录可以看到如下的目录结构&#xff1a; Bin bin目录主要是用来存放tomcat的命令&#xff0c;主要有两大类&#xff0c;一类是以.sh结尾的&#xff08;linux命令&#xff09;&#xff0c;另一类是以.bat结尾的&#xff08;windows命令&#xff09;。 …

npm或者pnpm或者yarn安装依赖报错ENOTFOUND解决办法

如果报错说安装依赖报错&#xff0c;大概率是因为npm源没有设置对&#xff0c;比如我这里安装protobufjs的时候报错&#xff1a;ENOTFOUND npm ERR! code ENOTFOUND npm ERR! syscall getaddrinfo npm ERR! errno ENOTFOUND npm ERR! network request to https://registry.cnpm…

小白水平理解面试经典题目LeetCode 594 最大和谐字符串

594 最大和谐字符串 这道题属于字符串类型题目&#xff0c;解决的办法还是有很多的&#xff0c;暴力算法&#xff0c;二分法&#xff0c;双指针等等。 题目描述 和谐数组是指一个数组里元素的最大值和最小值之间的差别 正好是 1 。 现在&#xff0c;给你一个整数数组 nums …

扫码看文件效果怎么做?文件转成二维码能制作吗?

随着网络的快速发展&#xff0c;现在大家习惯将内容储存在云端&#xff0c;减少自身内存容量的占用&#xff0c;所以现在分享文件时&#xff0c;很多人也会使用文件转二维码的方式&#xff0c;来让其他人查看或者下载文件。今天小编来给大家分享一下文件制作二维码的技巧&#…

司铭宇老师:二手房电话营销培训:二手房电话销售技巧和话术

二手房电话营销培训&#xff1a;二手房电话销售技巧和话术 一、二手房电话销售的重要性 1.高效传播&#xff1a;通过电话&#xff0c;我们可以迅速将房源信息传播给潜在客户&#xff0c;提高房源的曝光率。 2.精准定位&#xff1a;通过电话沟通&#xff0c;我们可以初步了解客户…

如何攻克钙钛矿太阳能电池电性能测试技术壁垒?

1 前言 “碳达峰、碳中和”背景下&#xff0c;发展新能源成为降低碳排放的第一驱动力。以太阳能为代表的清洁能源在市场上的占比大幅提升&#xff0c;与之对应的太阳能电池同样发展迅速。太阳能电池是一种吸收光能产生电能的半导体光电二极管&#xff0c;硅基电池作为第一代太…

Docker(十五)Fedora CoreOS

作者主页&#xff1a; 正函数的个人主页 文章收录专栏&#xff1a; Docker 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01; Fedora CoreOS CoreOS 是一个专门为安全和大规模运行容器化工作负载而构建的新 Fedora 版本&#xff0c;它继承了 Fedora Atomic Host 和 C…

13.8.1异步、异步、异步 Page720~721

#include <iostream> #include <thread> #include <future>using namespace std;///定时炸弹第一波 void sync_sleep(int s) {cout << "sync_sleep----不使用异步" << endl;///启动定时this_thread::sleep_for(chrono::seconds(s)); /…