自然语言处理--双向匹配算法

自然语言处理作业1--双向匹配算法

一、概述

双向匹配算法是一种用于自然语言处理的算法,用于确定两个文本之间的相似度或匹配程度。该算法通常使用在文本对齐、翻译、语义匹配等任务中。

在双向匹配算法中,首先将两个文本分别进行处理,然后分别从两个文本的角度进行匹配。这种双向匹配可以更全面地考虑两个文本之间的相似性,避免单向匹配算法可能出现的遗漏或错误匹配的情况。

双向匹配算法通常包括以下步骤:

  1. 分词处理:对两个文本分别进行分词处理,将文本分割成词语或短语的序列。
  2. 特征提取:从两个文本中提取特征,如词频、词性、语义信息等。
  3. 匹配计算:使用不同的匹配算法(如余弦相似度、编辑距离等)计算两个文本之间的相似度或匹配程度。
  4. 结果合并:将两个文本的匹配结果进行合并,得到最终的匹配结果。

双向匹配算法能够更准确地捕捉两个文本之间的相似性,提高了文本对齐、翻译、语义匹配等任务的准确性和效率。因此,在自然语言处理领域中得到了广泛的应用。

二、算法描述

正向最大匹配算法是一种中文分词算法,用于将连续的中文文本切分成词语。步骤如下:

  1. 从切分列表的第一个位置开始,取出长为最大词长MaxLen的词语作为子串。
  2. 判断子串是否在词库中存在,若存在则将该词作为分词结果,并将切分列表中对应的部分删除。
  3. 若子串在词库中不存在,则将子串的最后一个字符去掉,得到一个新的子串。
  4. 重复步骤2和步骤3,直到子串为空或切分列表为空。
  5. 返回分词结果。

反向最大算法也是一种中文分词算法,与正向最大匹配算法相反,从待分词文本的末尾开始逆向切分成词语。步骤如下:

  1. 从切分列表最后一个位置开始,取出长为最大词长MaxLen的词语作为子串。
  2. 判断子串是否在词库中存在,若存在则将该词作为分词结果,并将切分列表中对应的部分删除。
  3. 若子串在词库中不存在,则将子串的第一个字符去掉,得到一个新的子串。
  4. 重复步骤2和步骤3,直到子串为空或切分列表为空。
  5. 返回分词结果。

逆向最大匹配算法与正向最大匹配算法的区别在于匹配的方向,逆向最大匹配算法从后往前匹配词语,但原理和步骤与正向最大匹配算法相似。

三、详细描述

以“对外经济技术合作与交流不断扩大。”为例,详细描述算法如下:

正向最大匹配算法:

假设最大词长MaxLen为5

  1. 取子串 “对外经济技”,扫描词典,没有匹配,子串长度减1变为“对外经济”
  2. “对外经济”,扫描词典,没有匹配,子串长度减1变为“对外经”
  3. “对外经”,扫描词典,没有匹配,子串长度减1变为“对外”
  4. 对外”, 扫描词典,有匹配,输出“对外”,输入变为“经济技术合”
  5. “经济技术合”,扫描词典,没有匹配,子串长度减1变为“经济技术”
  6. “经济技术合”,扫描词典,没有匹配,子串长度减1变为“经济技术”
  7. “经济技”,扫描词典,没有匹配,子串长度减1变为“经济”
  8. 经济”,扫描词典,有匹配,输出“经济”,输入变为“技术合作与”
  9. “技术合作与”,扫描词典,没有匹配,子串长度减 1 变为“技术合作”
  10. “技术合作”,扫描词典,没有匹配,子串长度减 1 变为“技术合”
  11. “技术合”,扫描词典,没有匹配,子串长度减 1 变为“技术”
  12. 技术”,扫描词典,有匹配,输出“技术”,输入变为“合作与交流”
  13. “合作与交流”,扫描词典,没有匹配,子串长度减 1 变为“合作与交”
  14. “合作与交”,扫描词典,没有匹配,子串长度减 1 变为“合作与”
  15. “合作与”,扫描词典,没有匹配,子串长度减 1 变为“合作”
  16. 合作”,扫描词典,有匹配,输出“合作”,输入变为“与交流不断”
  17. “与交流不断”,扫描词典,没有匹配,子串长度减 1 变为“与交流不”
  18. “与交流不”,扫描词典,没有匹配,子串长度减 1 变为“与交流”
  19. “与交流”,扫描词典,没有匹配,子串长度减 1 变为“与交”
  20. “与交”,扫描词典,没有匹配,子串长度减 1 变为“与”
  21. 与”,扫描词典,有匹配,输出“与”,输入变为“交流不断扩”
  22. “交流不断扩”,扫描词典,没有匹配,子串长度减 1 变为“交流不断”
  23. “交流不断”,扫描词典,没有匹配,子串长度减 1 变为“交流不”
  24. “交流不”,扫描词典,没有匹配,子串长度减 1 变为“交流”
  25. 交流”,扫描词典,有匹配,输出“交流”,输入变为“不断扩大。”
  26. “不断扩大。”,扫描词典,没有匹配,子串长度减 1 变为“不断扩大”
  27. “不断扩大”,扫描词典,没有匹配,子串长度减 1 变为“不断扩”
  28. “不断扩”,扫描词典,没有匹配,子串长度减 1 变为“不断”
  29. 不断”,扫描词典,有匹配,输出“不断”,输入变为“扩大。”
  30. “扩大。”,扫描词典,没有匹配,子串长度减 1 变为“扩大”
  31. 扩大”,扫描词典,有匹配,输出“扩大”, 输入变为“。”
  32. 。”,扫描词典,有匹配,输入变为“”,扫描终止

正向最大匹配法最终的切分结果为:“对外/经济/技术/合作/与/交流/不断/扩大/。”


反向最大匹配算法:

假设最大词长MaxLen为5

  1. 取子串 “不断扩大。”,扫描词典,没有匹配,子串长度减1变为“不断扩大”
  2. “断扩大。”,扫描词典,没有匹配,子串长度减1变为“扩大。”
  3. “扩大。”,扫描词典,没有匹配,子串长度减1变为“大。”
  4. “大。”,扫描词典,没有匹配,子串长度减1变为“。”
  5. 。”,扫描词典,有匹配,输出“。”,输入变为“流不断扩大”
  6. “流不断扩大”,扫描词典,没有匹配,子串长度减1变为“不断扩大”
  7. “不断扩大”,扫描词典,没有匹配,子串长度减1变为“断扩大”
  8. “断扩大”,扫描词典,没有匹配,子串长度减1变为“扩大”
  9. 扩大”,扫描词典,有匹配,输出“扩大”,输入变为“与交流不断”
  10. “与交流不断”,扫描词典,没有匹配,子串长度减1变为“交流不断”
  11. “交流不断”,扫描词典,没有匹配,子串长度减1变为“流不断”
  12. “流不断”,扫描词典,没有匹配,子串长度减1变为“不断”
  13. 不断”,扫描词典,有匹配,输出“不断”,输入变为“合作与交流”
  14. “合作与交流”,扫描词典,没有匹配,子串长度减1变为“作与交流”
  15. “作与交流”,扫描词典,没有匹配,子串长度减1变为“与交流”
  16. “与交流”,扫描词典,没有匹配,子串长度减1变为“交流”
  17. 交流”,扫描词典,有匹配,输出“交流”,输入变为“技术合作与”
  18. “技术合作与”,扫描词典,没有匹配,子串长度减1变为“术合作与”
  19. “术合作与”,扫描词典,没有匹配,子串长度减1变为“合作与”
  20. “合作与”,扫描词典,没有匹配,子串长度减1变为“作与”
  21. “作与”,扫描词典,没有匹配,子串长度减1变为“与”
  22. 与”,扫描词典,有匹配,输出“与”,输入变为“济技术合作”
  23. “济技术合作”,扫描词典,没有匹配,子串长度减1变为“技术合作”
  24. “技术合作”,扫描词典,没有匹配,子串长度减1变为“术合作”
  25. “术合作”,扫描词典,没有匹配,子串长度减1变为“合作”
  26. 合作”,扫描词典,有匹配,输出“合作”,输入变为“外经济技术”
  27. “外经济技术”,扫描词典,没有匹配,子串长度减1变为“经济技术”
  28. “经济技术”,扫描词典,没有匹配,子串长度减1变为“济技术”
  29. “济技术”,扫描词典,没有匹配,子串长度减1变为“技术”
  30. 技术”,扫描词典,有匹配,输出“技术”,输入变为“对外经济”
  31. “对外经济”,扫描词典,没有匹配,子串长度减1变为“外经济”
  32. “外经济”,扫描词典,没有匹配,子串长度减1变为“经济”
  33. 经济”,扫描词典,有匹配,输出“经济”,输入变为“对外”
  34. 对外”,扫描词典,有匹配,输出“对外”,输入变为“”,扫描终止

反向最大匹配法最终的切分结果为:“对外/经济/技术/合作/与/交流/不断/扩大/。”

四、软件演示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/641555.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

企业使用CRM系统有哪些好处?使用CRM应该注意什么?

近年来,企业竞争日趋激烈,为推动企业业绩增长,赢得市场的一席之地,CRM成为企业争相布局的管理工具。那么CRM是什么,到底有什么魔力能让企业管理者着迷,本文我们将为大家进行深入剖析。 什么是CRM&#xff…

龙芯3A6000_通过xrdp远程访问统信UOS

原文链接:龙芯3A6000|通过xrdp远程访问统信UOS hello,大家好!今天我带给大家的是一篇实用性极强的技术文章——通过xrdp远程访问装载在龙芯3A6000上的统信UOS操作系统。这意味着,无论您使用的是Windows、MACOS还是Linux操作系统&a…

[视频处理]关于视频处理的多画面样式

在开发视频系统时,经常会遇到多画面的需求,这里收集一些多画面的素材,共大家参考。 图片来源于网络,仅供参考。 后续补充文章 【图像处理】使用FPGA实现视频多画面的方案 多画面样式

【博士每天一篇论文-综述】Deep Echo State Network (DeepESN)_ A Brief Survey

阅读时间:2023-11-22 1 介绍 年份:2017 作者:C. Gallicchio 比萨大学计算机科学系终身教授助理教授,A. Micheli,比萨大学计算机科学系 期刊: ArXiv 引用量:68 这是两个大牛的论文,…

autosar学习笔记 之SecOC

SecOC 接下来SecOC标准就更复杂一点,它不单单是做了通讯校验。 SecOC是基于对称密钥加密的一套机制,需要对ECU间的通讯作身份认证处理,来更好的防止伪装攻击,谈起对称或非对称加密,就会涉及到密钥的存储和Mac值的计算。 因此SECOC机制对于密钥的硬件存储,也有一定的要求…

matlab appdesigner系列-常用15-滑块、微调器

滑块,以左右拖动的方式在一定范围内改变数值 此示例,滑块显示微调器的数值,微调器也可以显示滑块的数值 操作步骤为: 1)将滑块和微调器拖拽到画布上 2)分别设置这两个组件的回调函数 回调函数有两个选项…

c语言-常见的动态内存错误

文章目录 前言一、常见的动态内存错误1.1 对空指针进行解引用操作1.2 对动态开辟的空间进行越界访问1.3 对非动态开辟的空间使用free()1.4 使用free()释放一块动态开辟的空间时,释放不完全1.5 对同一块动态开辟的空间进行多次释放1.6 动态开辟的空间使用后&#xff…

Android14源码剖析:MediaPlayer与MediaPlayerService区别?(五十四)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只…

MySQL数据库 | 事务中的一些问题(重点)

文章目录 什么是事务?事务的几个特性(ACID) -重点原子性(Atomicity)一致性(Consistency)隔离性(Isolation)持久性(Durability) Mysql中事务操作隐式事务显式事务 savepoint关键字只读事务事务中的一些问题(重点)隔离级别脏读解决办法 幻读解决…

美易官方《惊爆财务丑闻,有空头已经赚了十倍》

惊爆财务丑闻,“四大粮商”之首ADM股价暴跌,有空头已经赚了十倍 近日,一起惊爆市场的财务丑闻让全球投资者为之震惊。作为全球最大的农业综合企业之一,“四大粮商”之首的ADM(Archer Daniels Midland)被曝涉…

信息检索与数据挖掘 | (八)语言建模的IR

文章目录 📚语言生成模型📚平滑🐇线性插值平滑方法(Lelinek-Mercer)🐇dirichlet 平滑🐇Vector space(向量空间) vs BM25 vs LM 📚语言生成模型 传统的语言生成模型可以用于识别或生成…

【Pytorch】搭建一个简单的泰坦尼克号预测模型

介绍 本文使用PyTorch构建一个简单而有效的泰坦尼克号生存预测模型。通过这个项目,你会学到如何使用PyTorch框架创建神经网络、进行数据预处理和训练模型。我们将探讨如何处理泰坦尼克号数据集,设计并训练一个神经网络,以预测乘客是否在灾难…

MySQL数据库查询语句之组函数,子查询语句

组函数 以组为操作单位,一组数据得到一个结果。 在没有手动分组的前提下,整张表默认为一组数据 max(列名):获取最大值 min(列名):获取最小值 sum(列名):获取总和 avg(列名):获取平均值 count(列名)&a…

20.云原生之GitLab CICD实战

云原生专栏大纲 文章目录 GitLab RunnerGitLab Runner 介绍Gitlab Runner工作流程 Gitlab集成Gitlab RunnerGitLab Runner 版本选择Gitlab Runner部署docker-compose方式安装kubesphere中可视化方式安装helm方式安装 配置gitlab-runner配置gitlab-ci.ymlgitlab-ci.yml 介绍编写…

基于FPGA的高效乘法器

1、设计思路 二进制的乘法运算与十进制的乘法运算相似,如下图所示,二进制数据6’b110010乘以二进制数据4’b1011,得到乘积结果10’b1000100110。 图1 二进制乘法运算 仔细观察上图发现,乘数最低位为1(上图紫色数据位&a…

机器学习:什么是监督学习和无监督学习

目录 一、监督学习 (一)回归 (二)分类 二、无监督学习 聚类 一、监督学习 介绍:监督学习是指学习输入到输出(x->y)映射的机器学习算法,监督即理解为:已知正确答案…

期末考试发等级发成绩,就用易查分!

期末考试后,学校老师如何发布私密成绩?易查分可以轻松创建等级、成绩查询系统,让家长仅看到自己孩子成绩。 支持查询后留言反馈,电子签名确认签收等高级功能,节省老师沟通时间,大大提升工作效率。 &#x1…

linux安装docker(入门一)

环境:centos 7(linux) 网站 官网: https://docs.docker.com/ Docker Hub 网站: https://hub.docker.com/ 容器官方概述 一句话概括容器:容器就是将软件打包成标准化单元,以用于开发、交付和部署。 容器镜像是轻量的、可执行的独立软件包 &…

【百面机器学习】读书笔记(一)

本文系列主要作用就是读书笔记,自己看的话比较杂,没怎么归类过,所以现在跟着这个分类走一遍。本文主要内容为前两章,特征工程和模型评估。 如果我想起一些相关的内容也会做适当的补充,主打就是一个intuition&#xff…

OpenCV书签 #直方图算法的原理与相似图片搜索实验

1. 介绍 直方图算法(Image Histogram Algorithm) 通过统计图像中各个颜色值的分布情况来提供关于图像颜色特征的信息,它可以用来衡量两张图片在颜色分布上的相似度,进而可以用来进行图像相似度的比较,因此&#xff0c…